
JDJ Exclusive: IBM Offers Latest Java Technology
VisualAge 2.0 ready to ship this fall with all new features... 56

JDJ Feature: Practical Layout Managers Claude Duguay
Taking the mystery out of Layout Manager development puzzle 8

Persistent User Interface with Java Andrei Cioroianu
Differentiating between profiles using object serialization 16

Feature: Caching and WeakReferences Lynn Monson
Careful crafting of caching algorithms can tailor runtime memory 32

The Widget Factory: JOutlook Bar Claude Duguay
Alternative views in an application for the user 22

Applet to Applet Communication with RMI Pascal Ledru
Pass remote calls to allow bidirectional communication 38

Straight Talking Alan Williamson
Trusting Oracle’s new JDBC driver to work as you’d expect 28SYS-CON

PUBLICATIONS

Product Reviews
SourceGuard

by David Reilly pg.43
...

ProtoSpeed
by Jim Mathis pg.52

The Grind
Results of Impedence

Mismatch
by Java George pg.66

Cosmic Cup
Web Products

by Ajit Sagar pg.46

Volume:3 Issue:8, 1998

J a v a D e v e l o p e r s J o u r n a l . c o m

READERS’ CHOICE AWARDS ANNOUNCED!READERS’ CHOICE AWARDS ANNOUNCED!READERS’ CHOICE AWARDS ANNOUNCED!
TM

Context Button

Context Button

North Arrow

Icon and Label

Icon and Label

ContextPanel

ContextLayout

ScrollingPanel

JViewport

ListLayout

JDJEXCLUSIVEPREVIEW

JDJEXCLUSIVEPREVIEW

Hot New
Emerging

picoJava
by Harlan McGhan pg.50

Real Network
Possibilities…
Sun’s JINI

Sneak Peak:

from IBM

VisualAge 2.0
for Java

RETAILERS PLEASE DISPLAY
UNTIL OCTOBER 31, 1998

2 • VOLUME: 3 ISSUE: 8Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Full Page Ad

3VOLUME: 3 ISSUE: 8 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Full Page Ad

4 • VOLUME: 3 ISSUE: 8Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Full Page Ad

5VOLUME: 3 ISSUE: 8 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

About two years ago a colleague of
mine named Joe leaned over my cubicle
wall and said, “Hey, I just downloaded this
new language called Java. It’s pretty cool!”
At the time I can’t remember being very
excited about another programming lan-
guage. I was a PowerBuilder maven and
Joe was up to his eyeballs in C++. That
probably accounts for some of my disin-
terest and Joe’s initial drooling (sorry Joe,
but you did). Two years and one large
scale Java project later, I’m as much a con-
vert as Joe.

That doesn’t mean I want to rebuild
everything that’s ever been written in Java,
nor does it mean I think PowerBuilder’s
obsolete (or C++ for that matter). I recent-
ly attended a conference where a technical
representative from Sun was discussing
Java for the enterprise. He asked, “Where
should we use Java?” His answer was most
appropriate, “Where you need it.”

There’s nothing a client hates more
than an “it depends” answer. Unfortu-
nately, it’s often the truth. So it is with
this answer. Where you’re going to use
Java depends on your needs and strate-
gic direction. Should you use Java every-
where? Almost without a doubt, no.
There are things Java is good at and
there are things Java is not good at.
There are also practical considerations,
such as corporate infrastructure, that
have nothing to do with Java’s capabili-
ties but impact where Java is and is not
practical.

As an example of what’s not practical,
look at Corel’s attempt to re-create its
office suite in Java. In theory, Java is as
suited for this as any language, more so
than some with strong multitasking. But
this was not the right place for Java. For
one thing you need every ounce of speed
on a machine to make these overpro-
grammed suites perform well. JIT compil-
ers notwithstanding, native code is still
faster right now.

Even worse, you know someone would
get the bright idea to host this in a brows-
er. Why buy a thousand copies when you
can access a single copy over the LAN? It’d
be a tossup as to who would shoot that
guy first – the network administrators who

were dealing with network overload or the
users who were waiting hours for their
new “improved” software to load.

Probably the biggest lesson that needs
to be learned is that Java is part of an archi-
tecture, not an architecture unto itself. I
hear companies saying, “We’ve got to go to
Java,” and I can understand their frustra-
tion and desire. The Internet has turned the
safe, known world of client/server on its
ear, and the closest thing to a standard that
most of us can find is Java.

That’s great. I’m all for Java being the
language of the Net. It’s compact, it’s ele-
gant and it’s fun to program in. The prob-
lem is that you can’t simply swap Java for
whatever language you’ve been doing
two-tier development in and expect to
have a solution. For one thing, JDBC is
still not as far along as ODBC or native
drivers. For another, it’s harder to pro-
vide the same rich GUI, at least on Win-
dows platforms. Love it or hate it, Win-
dows is still the overwhelming desktop
today, and we need to be able to build
better looking Java apps if Java is to
become a dominant force on those desk-
tops. Some of this is due to the browsers
rather than to the language itself. I have
to applaud the people who put HTML
together as a document language, but as
an application environment it leaves a lot
to be desired.

So what do we do? It’s pretty simple
really. We need to put Java where it
belongs. It’s not the only tool we have, and
we must have good reasons for selecting it
over other languages and products. At the
same time we need to push for improve-
ments in the browsers and compilers, and
hope that a JavaOS will actually make
sense, both from a programmatic and, in
an era of $700 PCs, an economic sense.
Meanwhile, I need to call Joe and tell him
he was right. I hope he doesn’t rub it in.

About the Author
Sean Rhody is a senior consultant with Computer
Sciences Corporation where he specializes in
application architecture, particularly distributed sys-
tems. He is also Editor-in-Chief of Java Developer's
Journal. You can contact Sean at roadhog@nac.net.

I Told You So

FROM THE EDITOR

Sean Rhody
EDITORIAL ADVISORY BOARD

Ted Coombs, Bill Dunlap, David Gee, Arthur van Hoff,
Brian Maso, Sean Rhody, Kim Polese, Rick Ross,

Richard Soley, George Paolini
Editor-in-Chief: Sean Rhody

Art Director: Jim Morgan
Executive Editor: Scott Davison
Managing Editor: Anita Hartzfeld

Senior Editor: M’lou Pinkham
Editorial Assistant: Brian Christensen

Technical Editor: Bahadir Karuv
Visual J++ Editor: Ed Zebrowski

Visual Café Pro Editor: Alan Williamson
Product Review Editor: Jim Mathis

Games & Graphics Editor: Eric Ries
Tips & Techniques Editor: Brian Maso

WRITERS IN THIS ISSUE
Andrei Cioroianu, Scott Davison, Claude Duguay,

George Kassabgi, Pascal Ledru, Jim Mathis,
Lynn Monson, Jim Redman, David Reilly, Sean Rhody,

Rick Ross, Ajit Sagar, Alan Williamson

SUBSCRIPTIONS
For subscriptions and requests for bulk orders,

please send your letters to Subscription Department

Subscription Hotline: 800 513-7111
Cover Price: $4.99/issue.

Domestic: $49/yr. (12 issues) Canada/Mexico: $69/yr.
Overseas: Basic subscription price plus air-mail postage

(U.S. Banks or Money Orders). Back Issues: $12 each

Publisher, President and CEO: Fuat A. Kircaali
Vice President, Production: Jim Morgan
Vice President, Marketing: Carmen Gonzalez

Advertising Manager: Claudia Jung
Advertising Assistants: Erin O’Gorman

Jaclyn Redmond
Accounting: Ignacio Arellano

Graphic Designers: Robin Groves
Alex Botero

Webmaster: Robert Diamond
Senior Web Designer: Corey Low

Customer Service: Sian O’Gorman
Paula Horowitz

Online Customer Service: Sian O’Gorman
Customer Service Interns: Angela Frasco

Ann Marie Mililo

EDITORIAL OFFICES
SYS-CON Publications, Inc.

39 E. Central Ave., Pearl River, NY 10965
Telephone: 914 735-1900 Fax: 914 735-3922

Subscribe@SYS-CON.com
JAVA DEVELOPER’S JOURNAL (ISSN#1087-6944) is

published monthly (12 times a year) for $49.00 by SYS-CON
Publications, Inc., 39 E. Central Ave., Pearl River, NY 10965-2306.

Application to mail at Periodicals Postage rates is pending at
Pearl River, NY 10965 and additional mailing offices.

POSTMASTER: Send address changes to:
JAVA DEVELOPER’S JOURNAL, SYS-CON Publications, Inc.,

39 E. Central Ave., Pearl River, NY 10965-2306.

© COPYRIGHT
Copyright © 1997 by SYS-CON Publications, Inc. All rights reserved. No part of this
publication may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopy or any information storage and retrieval system,

without written permission. For promotional reprints, contact reprint coordinator.
SYS-CON Publications, Inc. reserves the right to revise, republish and authorize

its readers to use the articles submitted for publication.

ISSN # 1087-6944

Worldwide Distribution by
Curtis Circulation Company

739 River Road, New Milford NJ 07646-3048Phone: 201 634-7400

BPA Membership Applied For
Java and Java-based marks are trademarks or registered trademarks of

Sun Microsystems, Inc. in the United States and other countries.
SYS-CON Publications, Inc. is independent of Sun Microsystems, Inc.

SYS-CON
PUBLICATIONS

6 • VOLUME: 3 ISSUE: 8Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Full Ad

7VOLUME: 3 ISSUE: 8 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

The Component
Choice for e-business

FROM THE INDUSTRY

David Gee
PHONE, ADDRESS

& WEB DIRECTORY
CALL FOR SUBSCRIPTIONS

1800 513-7111
International Subscriptions

& Customer Service Inquiries
914 735-1900

or by fax: 914 735-3922

E-Mail: Subscribe@SYS-CON.com
http://www.SYS-CON.com

MAIL All Subscription Orders or
Customer Service Inquiries to

SYS-CON Publications, Inc.
39 E. Central Ave.

Pearl River, NY 10965 – USA

EDITORIAL OFFICES
Phone: 914 735-1900

Fax: 914 735-3922

ADVERTISING & SALES OFFICE
Phone: 914 735-0300

Fax: 914 735-7302

CUSTOMER SERVICE
Phone: 914 735-1900

Fax: 914 735-3922

DESIGN & PRODUCTION
Phone: 914 735-7300

Fax: 914 735-6547

Worldwide Distribution by
Curtis Circulation Company

739 River Road,
New Milford NJ 07646-3048

Phone: 201 634-7400

DISTRIBUTED in the USA by
International Periodical Distributors

674 Via De La Valle, Suite: 204
Solana Beach, CA 92075

Phone: 619 481-5928

SYS-CON
PUBLICATIONS

����
����
����

QQQQ
QQQQ
QQQQ

¢¢¢¢
¢¢¢¢
¢¢¢¢

1997 JAVA Products & Services

& Internet Directory
Buyer’s GuideBuyer’s Guide

Java Developer’s Journal
JavaDevelopersJournal.com

Web-Pro Developer’s Supplement

National Java Learning Center, Inc.

JDJ Buyer’s Guide
JavaBuyersGuide.com

Cold Fusion Developer’s Journal
ColdFusionJournal.com

NorthWest

West

SouthWest

North

Center

South

NorthEast

East

SouthEast
1x1

1x2

1x1

2x1

2x2

2x1

1x1

1x2

1x1

Practical
Layout

Managers
Add a trio of classes

to your inventory
and a few techniques

to your bag of tricks

by Juergen Brendel

by Claude Duguay

JDJ COVER STORY

9VOLUME: 3 ISSUE: 8 •

O,O-4,1 8,O-6,2

3,2-3,1

0,7 -14,1

1,4-5,2

7,3 -6,3

2x1

2x2

2x1

1x1

1x2

1x1

Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

This article tries to take the mystery out of the black art of devel-
oping layout managers. Much of the coverage in books and maga-
zines typically centers on trying to wrench the complicated Grid-
BagLayout into submission or demonstrates the development of a
layout manager with virtually no practical use. In the real world of
software engineering, the need for applicable solutions takes prece-
dence. This article will add a trio of reusable classes to your inven-
tory and, hopefully, a few techniques to your personal bag of tricks.

If you’ve done any Java user interface development, you’ve prob-
ably used the BorderLayout and GridLayout to some extent. In fact,
you probably figured out pretty quickly that nesting these layout

managers typically gives you the control you need to get the job
done, getting the layout to look the way you intended. Since one of
Java’s primary objectives is portability, you’ve probably managed to
avoid hard-coding positions by setting the layout manager to null. If
you haven’t, you really should stop doing that. Unfortunately, some
RAD tools tend to do this by default. But the payoff is considerable
if you use proper layout managers.

Practical Layout Design
We can learn a little from the layout managers that ship with the

Java Development Kit and a couple of the new layout managers
released with the Java Foundation Classes. Table 1 gives a quick
summary of those managers. Pay special attention to the descrip-
tions.

The JFC also introduces the ScrollPaneLayout and ViewportLay-
out managers, but they are so tightly coupled to their respective
JScrollPane and JViewport components that they are virtually use-
less in other contexts.

You’ll notice a few things about these:
• Each has a simple purpose, described in a single sentence and

easy to understand.
• None of them use exact positioning so they avoid tight coupling to

a given display area.
• Each method has a natural organization behind it, often reflected

in a real-life approach.
• All layout managers have the Layout suffix as part of their name.

Table 2 covers the implementation of new layout managers. We’ll
elaborate on their internal function after a quick look at the layout
manager interfaces.

The LayoutManager Interface
The basic design of a LayoutManager is fairly simple. You need to

declare your class as implementing the LayoutManager interface
and then implement the following methods:
• addLayoutComponent(String, Component)
• removeLayoutComponent(Component)
• layoutContainer(Container)
• Dimension minimumLayoutSize(Container)
• Dimension preferredLayoutSize(Container)

The addLayoutComponent method is called when you use the
add method in your container. Typically, the add method has only
one parameter, so the addLayoutComponent method is called with
the string set to null. With the BorderLayout, the label indicating
position is passed using the add method with the string and compo-
nent arguments. The layout manager handles the add with the add-
LayoutComponent method. The remove method is seldom used in a
container but it works pretty much the same way, calling the
removeLayoutComponent method. The layoutContainer method is
called when you or the system calls the doLayout method. Two addi-
tional methods, getMinimumSize and getPreferredSize, are provided
to determine the minimum and preferred layout sizes.

The LayoutManager2 Interface
Most of the shortcomings in the LayoutManager design stem

from the need to use a String to describe positional or constraint
information in the add method. The LayoutManager2 interface
extends LayoutManager to deal with this more effectively. With the
extended addLayoutComponent method, you can pass any object
you want to handle specialized circumstances. The container add
method calls this method automatically if it has the component,
object argument signature.

The following methods in the LayoutManager2 interface extend
the LayoutManager interface, and therefore require those methods

10 • VOLUME: 3 ISSUE: 8Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

to be implemented as well:
• addLayoutComponent(Component, Object)
• Dimension maximumLayoutSize(Container)
• invalidateLayout(Container)
• int getLayoutAlignmentX(Container)
• int getLayoutAlignmentY(Container)

The getMaximumSize method in containers is supported by call-
ing the maximumLayoutSize method in the layout manager. This
functionality was missing in the earlier interface and seems like a
natural extension. If the layout manager or supporting classes
make changes to the container in important ways, the invalidate-
Layout method accommodates forcing a repaint operation. Finally,
the getLayoutAlignmentX and getLayoutAlignmentY methods pro-
vide a way of determining how to align the component. The value
returned indicates a relative position along the specified axis. A
value of zero (0) indicates the origin and one (1) furthest from the
origin. A value of 0.5, typically used as a default, indicates a posi-
tion in the middle.

The AbstractLayout Class
When I developed the three layout managers presented here, I

first wrote them independently. But as often happens in a devel-
opment project, I noticed several common elements and revised
the code to move these commonalties into a parent class. The
resulting abstract class is reusable, as you might expect, and pro-
vides a number of common and default behaviors that help make
the code much thinner. Figure 1 shows the class hierarchy for the
layout managers and their AbstractLayout parent class. Let’s take

a quick look at the commonalities.
The layout managers allow you to specify horizontal and vertical

gaps between components. They have accessor methods associated
with them so the values can be retrieved and set outside the layout
manager’s constructor. Internally, they are represented as integer
member variables named hgap (horizontal gap) and vgap (vertical
gap). The accessors follow the JavaBean convention and are named
with the get and set prefix. These methods will not be presented in
this article, but you can find the entire code base on the Java Devel-
oper’s Journal Web site.

The maximumLayoutSize method always returns a Dimension
object with Integer.MAX_VALUE set for the width and height, leaving
the maximum size unconstrained. We’ll present specific code for the
preferredLayoutSize method, which calculates the appropriate
dimensions for the full layout manager for each respective layout
manager. The similarity to minimumLayoutSize is so pronounced
however, that it’s not worth presenting them individually. The differ-
ence between them lies in the calls made to getPreferredSize for
each component in the preferredLayoutSize method and the use of
getMinimumSize in the minimumLayoutSize methods, respectively.

When implementing the LayoutManager2 interface, we need to
provide the getLayoutAlignmentX and getLayoutAlignmentY meth-
ods. By convention, these always return a value of 0.5, which indi-
cates centering as the default position for smaller containers. The
layout managers we present always resize the component anyway,
so they have no real effect on the layout behavior. If you have more
specific needs, you can override this method in a subclass at your
discretion.

The addLayoutComponent and removeLayoutComponent han-
dling is not order dependent except in the CastleLayout, which has
only nine positions and thus controls where in the component array
each is stored. As such, we’ll present only the CastleLayout code.
The AbstractLayout class simply assumes that the container han-
dles these values. The ScalingLayout manager extends this behavior
and stores the constraints in a hash table.

Finally, the toString method is always implemented, as is the
invalidateLayout method, which actually does nothing though it has
to be present to implement the interface. This method is used only
to force a repaint in specialized layout managers.

The CastleLayout Class
The CastleLayout manager is designed to handle a number of

real-life cases, such as:
• Setting up scroll bars or rulers in positions relative to the central

panel
• Creating borders with sides and corners drawn by individual com-

ponents

Layout Manager From Description
BorderLayout JDK Lays out a container, arranging and resizing

its components to fit into five regions: north,
south, east, west and center.

CardLayout JDK Acts like a stack of cards, treating each
component in the container as a card where
only one card is visible at a time.

FlowLayout JDK Arranges components in a left-to-right flow,
like lines of text in a paragraph.

GridLayout JDK Lays out a container’s components in a
rectangular grid.

GridBagLayout JDK Lays out components based on a
comprehensive constraint object that
defines relative positional information

BoxLayout JFC Allows multiple components to be laid out
either vertically or horizontally.

OverlayLayout JFC Arrange components on top of each other,
overlapping where their dimensions require it.

Layout Manager Description
CastleLayout Arranges components to fit into nine regions: north,

south, east, west, northwest, northeast, southwest,
southeast and center.

ProportionLayout Lays out components in a proportional rectangular grid
defined by a collection of specified row heights and
column widths.

ScalingLayout Lays out components in a scalable regular grid where
components can occupy any specified rectangular
region, possibly overlapping.

Table 1

Figure 1: Practical layout managers class hierarchy

Table 2

11VOLUME: 3 ISSUE: 8 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Ad

12 • VOLUME: 3 ISSUE: 8Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

• Drawing legends, labels or other details relative to a central display
• Placing tool bars, logos and control elements around a central panel

Figure 2 shows how the various areas are laid out, by name.
The CastleLayout manager implements the LayoutManager2

interface, so it has to implement all the methods in the LayoutMan-
ager and LayoutManager2 interfaces. The most important methods
are the preferredLayoutSize and layoutContainer, so we’ll focus on
those. There is some code reuse in these methods and a handful of
private internal methods to make things easier. Take a look at Listing
1 to see how they work.

The instance variables and constants are listed first. The get-
Component method defaults to CENTER if the name is not provid-
ed. We assume a null name is handled the same way as the Bor-
derLayout default. The isVisible method returns true if the compo-
nent is neither null nor invisible. If a component is invisible, it’s
considered unavailable during the layout call. The setBounds
method avoids resizing an invisible component while properly han-
dling visible components. The getSize method makes it possible to
reuse the same code to get the preferred and minimum size of a
given component.

The primary purpose of the interface method preferredLayout-
Size is to figure out how big the container should be if it’s contained
in another layout manager or if the pack method is used to resize a
dialog box or window frame. We need to figure out the maximum size
of each of the north, south, east and west positions, depending on
the components in those rows and columns. To do this we walk
through the list of elements in a specific order, calculating the largest
size at each stop. At the end we are left with the center area occu-
pying the remaining space. Notice that the vertical and horizontal
gaps are part of these calculations and that the insets for the layout
are factored in as well.

Listing 2 shows the calculateLayoutSize method, which returns
the four inset positions for the left/right widths and top/bottom
heights. It calls the getSize private method with the correct type
(PREFERRED or MINIMUM), which is passed to it by the calling
method. The preferredLayoutSize method itself then takes the cen-
ter component, vertical and horizontal gaps and the container’s
insets into account before returning the preferred dimensions. The
minimumLayoutSize is virtually identical except that the MINIMUM
constant is used instead of PREFERRED.

The layoutContainer method is actually responsible for the
real work in a layout manager (see Listing 3 for the code). We do
this in two passes, calculating the row and column positions for
the north, south, east and west elements (which, naturally,
include the corners) by calling the calculateLayoutSize again.
Once we have those figured out, we can resize the components
with the setBounds method. Like the preferred and minimum size
calculations, we account for the vertical and horizontal gaps and
the container’s insets. Any remaining space is given to the center
component.

The ProportionalLayout Class
The ProportionalLayout manager:
• Lets the programmer control the width of individual columns in

a grid layout
• Lets the programmer control the height of individual rows in a

grid layout
• Provides an easy way to create homogeneous rows or columns

Figure 3 shows how the rows and columns can vary. The values
are shown as 1 and 2 for simplicity but they are completely arbitrary
and relate only to each other. Any integer can be used, so long as the
total of all rows or all columns doesn't go over Integer.MAX_VALUE.

Listing 4 shows how the row proportions are precalculated when

the value is set. This might take place in the constructor or with an
explicit call to the setRows method. There are two signatures for
setRows, one of which allows you to set an arbitrary number of rows
to 1. This provides the same behavior as the GridLayout manager
and may be applied to one or both dimensions (vertical and hori-
zontal). The setCols methods are not presented because they are vir-
tually identical except for the orientation. The real trick lies in main-
taining an integer array as well as a floating point array. The first
stores the integer proportions used by the layout manager. The sec-
ond normalizes those values into a range between 0 and 1 so that
laying things out is easier.

The ProportionalLayout implements the LayoutManager inter-
face so it has fewer methods than the other two layout managers.
Given that we are inheriting from the AbstractLayout class, this mat-
ters little, but it’s worth noting anyway. Like all layout managers, the
preferredLayoutSize and minimumLayoutSize represent a good part
of the work to be done. Listing 5 shows the preferredLayoutSize
method. We loop through each row and column, accounting for the
possibility that fewer than the maximum number of components
might be used, and determine what the relative unit size should be.
We then loop through each orientation to add up the width and
height required. As you might expect, the minimumLayout size is vir-
tually identical except for the call to getMinimumSize to get the
dimensions.

Once again, the real workhorse is the layoutContainer method.
Listing 6 shows how we start our calculation by determining what
the unit size has to be. We use floating point numbers to avoid gross
rounding errors during scaling. If we used integers directly, the
boundary conditions would show up unevenly in our display, mak-
ing some units noticeably larger or smaller than the average. We
loop through the contained components and resize them based on
the relative row and column sizes. All we have to do is call set-
Bounds for each container and we’re done.

Figure 2: CastleLayout manager arrangement

NorthWest

West

SouthWest

North

Center

South

NorthEast

East

SouthEast

Figure 3: ProportionalLayout manager arrangement

1x1

1x2

1x1

2x1

2x2

2x1

1x1

1x2

1x1

2x1

2x2

2x1

1x1

1x2

1x1

13VOLUME: 3 ISSUE: 8 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Ad

The ScalingLayout Class
The ScalingLayout manager:

• Lays out components positionally without tight coupling to dis-
play resolution

• Allows scaling without destroying relative positioning of compo-
nents

• Allows objects to overlap if necessary – drawing windows, for
example

• Is ideal for drawing line art, where scale changes but not relative
positions

Figure 4 shows how the ScalingLayout might look for six com-
ponents placed at various positions in the scalable grid area. For
clarity, the rectangle values are represented as x,y-width,height.

The ScalingLayout implements the LayoutManager2 interface.
We use the java.awt.Rectangle object to describe constraints. The
default Container behavior does not actually save this information.
To handle this properly, we override the default addLayoutCompo-
nent and removeLayoutComponent to handle this explicitly. We
use a HashTable object to store the Rectangle constraint associat-
ed with each object and remove it as appropriate. Listing 7 shows
these simple methods. Notice how we check the instance type for
the constraint parameter in the addLayoutComponent method to
help developers easily find the problem if they use a different
object type.

By now, the preferredLayoutSize and layoutContainer methods
should be old friends. Not surprisingly, Listing 8 shows how the pre-
ferredLayoutSize is handled and the implication remains that the
minimumLayoutSize method is almost identical except for the
underlying calls to getPreferredSize. Since we know the grid is made
up of uniform cell sizes, we find the largest vertical and horizontal
unit sizes and simply multiply by the number of rows and columns
to get the preferred and minimum dimensions.

The layoutContainer method is presented in Listing 9. We first
calculate the vertical and horizontal unit size for each grid cell as
a floating point value, accounting for the container insets and the
vertical and horizontal gaps. Then we lay out each of the compo-
nents in the order they are found in the Container. This is an impor-
tant point if your objects overlap, since the last drawn components
will overlap those that are drawn first. Notice that when we calcu-
late the width and height, we work backward from the calculated x
and y positions for the left and right or top and bottom positions.
Rather than setting the component bounds to the x,y position and
a calculated width and height, we figure out the right and bottom
positions (based on the rectangle width and height) and then work
out the relative bounds’ width and height. Doing this the more
obvious way results in occasional single-pixel gaps that you don’t
really want to see.

Summary
Figure 5 shows a digital clock example that is implemented

almost entirely with layout managers, in particular the three pre-
sented in this article. The code is not presented here but can be
found on the Java Developer’s Journal Web site, along with the lay-
out manager and related test harness code. The clock uses the JFC,
so you’ll need to have it installed to try it out. The CastleLayout is
used to place the sides and corners; the ProportionLayout is used
for each digit and colon. The ScalingLayout is used to position the
digits and the colon in the central area. The whole thing is imple-
mented as the main method in the Crystal class, given that it’s the
only new class required to draw the rounded green crystals. The rest
of the code is static, and present only to make the nested layout
code more readable. There’s no actual timing code, since this was
meant as an example, but it wouldn’t take much to turn it into a valid
prop for Jeff Goldblum if you’re shooting the sequel to Independence

Day, given that it can easily scale to fill the laptop screen for effect.
Layout managers are rarely implemented by developers work-

ing on Java projects, yet they represent one of the simplest ways of
controlling component positioning without tight coupling to the
display resolution. While they have been discussed in various
books and articles, few have presented a practical approach to
developing solutions with reusable layout manager classes. In
many cases it is simpler to develop a new layout manager than to
nest the various existing managers to get the desired look and feel.
My own experience with the GridBagLayout has never led to a sat-
isfying, predictable result. If you’ve mastered and prefer it, you
have my blessing.

I’ve tried to present enough information and example code to
make developing custom layout managers an easy choice for you
to make when the opportunity presents itself. You should now have
a good foundation to help you make an informed choice next time
you are presented with a problem that would benefit from a custom
layout manager. Finally, if you take nothing more away from this
article than the three layout managers implemented here, you
should have gained a trio of useful components for your program-
ming arsenal which will hopefully serve you well in your program-
ming endeavors.

About the Author
Claude Duguay has been programming since 1980. In 1988 he founded LogiCraft
Corporation, and he currently leads the development team at Atrieva Corp. You can
contact him with questions and comments at claude@atrieva.com.

14 • VOLUME: 3 ISSUE: 8Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

claude@atrieva.com

Figure 4: ScalingLayout manager arrangement

O,O-4,1
8,O-6,2

3,2-3,1

0,7 -14,1

1,4-5,2
7,3 -6,3

Figure 5: Digital clock example

The complete code listing for
this article can be located at

www.JavaDevelopersJournal.com

▼▼▼▼▼▼ CODE LISTING ▼▼▼▼▼▼

15VOLUME: 3 ISSUE: 8 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Ad

16 • VOLUME: 3 ISSUE: 8Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

by Andrei Cioroianu

I’m starting my computer. I’m waiting for the operating system to be loaded.
Now I can see the icons of my favorite applications. They’re aligned on my desk-
top and in the same positions I left them.

I’m launching a development tool. It’s creating its own windows and loading
the toolbars I need. I select a project I want to work on from the list of those I used
most recently. Everything is the same as it was when I closed this project.

What is hiding behind this mechanism? Lots of code that saves the coordi-
nates of the windows, the position of the cursor in each window, the position of
the visible text, the position of the selected text and many other parameters that
determine the current state of the application’s user interface. Each project has
several files in which it keeps all this data. The application has its own config files.
The programmers who made the tool worked very hard, and the persistence of
the interface between two consecutive sessions is timesaving for users.

Now I’m launching one of my applications written in Java. Its window is placed
somewhere on-screen at random coordinates or in the upper-left corner. This phe-
nomenon doesn’t appear at the Java applications that use property files, in which
they keep the coordinates and dimensions of the windows. If the user interface is
complex, however, then the property files become inadequate. You might be will-

Differentiating
between profiles using

object serialization

JDJ FEATURE

Persistent User
Interface for

Multiuser
Applications

Persistent User
Interface for

Multiuser
Applications

17VOLUME: 3 ISSUE: 8 • Java DEVELOPER’S Journal

ing to spend money and time to write
the code for reading and writing files in
an application-specific format, but
maintaining that code will be a real
pain. Each change of the file format will
require modifications in the source
code in at least two places (the read
and write routine). Is there a simpler
solution? Yes. You can use object serial-
ization.

Why Choose Java?
Suppose you need an application that

allows each user to connect to a network,
depending on his/her position(s) in the
company: manager, designer or developer
(Figure 1). The users won’t want to redefine
their profile each time they run the applica-
tion, so the profile should be serialized. So
as not to grow the line count of the source
code more than necessary, I won’t intro-

duce options for colors or fonts. For a real-
world application, these options might be
compulsory. A user who has a few complex
profiles might want to identify them rapidly
according to the background color of the

application (which becomes the parameter
of the profile). Using the simple application
described in this article, the user will be
able to differentiate the profiles, depending
on the on-screen position of the applica-
tion’s window.

For a heterogeneous network you will
choose Java. But the cross-platform sup-
port isn’t the only advantage Java provides.
Even if all users have the same operating
system, they will still have displays with dif-
ferent resolutions, so fonts and controls
will have different sizes. Few frameworks
offer the flexibility of the Layout Managers
from AWT. Sometimes you’ll hear criticism
that the AWT-based interfaces should be
tested on all target platforms. It’s impossi-
ble to write applications whose interfaces
fit, on the first try, in all user preferences.
However, an AWT dialog box can be resized,
and all the UI components will be automat-
ically reshaped. Users can resize the win-
dows so the fonts and controls of their plat-
form are correctly shown, instead of using
font sizes that are established when the
application is written. It remains only to
serialize the dimensions of the windows so
they don’t have to start all over again each
time they launch the application. It’s unfair
to criticize AWT, which has, in addition, a
multithreading architecture. Since most
native applications use dialog boxes that
are modals with fixed dimensions, the code
of these applications either isn’t reentrant
or is running in a single thread.

If you’re still undecided about using
Java, I’ll give you one more reason. The
Object Serialization API provided by Java is
easy to use, flexible and scalable. You won’t
find something like this in other popular
programming languages, such as C++,
which produces native code, because the
Serialization API is based on Reflection API.
The latter provides information at runtime,
which in the case of C++ native applications
is available only at compile-time. I must say
that MFC of Visual C++ provides some sup-
port for serialization, but the developers
have to replace lots of TODOs with their
own code. Unlike MFC, Java handles many
issues automatically with the help of the
reflection API. Sometimes, being interpret-
ed means being superior.

The SmartLogin Application
The main class of the application, Smart-

Login, extends java.awt.Frame. The mem-
ber variables are a constant -- okay, a string
-- profile, which keeps the name of a file and
several variables that reference the UI com-
ponents of the application. The applica-
tion’s user interface will be serialized in the
profile file.

public static final String OK = “OK”;

18 • VOLUME: 3 ISSUE: 8Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

private transient String profile;
private TextField tName, tPassw;
private Checkbox cMan, cDes, cDev;
private Button bOk, bCancel;

The constructor of the SmartLogin class
(Listing 1) receives as parameter a string
taken from the command line, which repre-
sents the name of the user’s profile. A refer-
ence to this string will be stored in the pro-
file member variable. The constructor sets
the title, size and the LayoutManager of the
window. The last one is GridLayout(6,1). In
the first two lines it inserts a label -- “Name:”
– and a TextField -- tName – in which the
users will type their name. In the third line
are the three Checkboxes that define the
user’s profile, cMan, cDes and cDev. The
next two lines contain a label --“Password:”-
- and a TextField -- tPassw -- in which users
will type the password. The last line groups
two buttons -- bOk, and bCancel. The events
which are fired when the buttons are
pushed or the window is closed when inter-
cepted by a SmartAdapter instance.

The SmartAdapter class (Listing 2)
extends java.awt.event.WindowAdapter
and implements java.awt.event.ActionLis-
tener, java.io.Serializable. The SmartLogin()
constructor receives as parameter an
instance, sd, of the SmartLogin class. The
actionPerformed() method implements the
method with the same name of the Action-
Listener interface. This method is called
when one of the buttons is pushed. For the
Ok button it calls the login() and serialize()
methods of the SmartLogin instance. The
windowClosing() method overrides the
method with the same name of the Win-
dowAdapter class. This method is called
when the user closes the application’s win-
dow. The Serializable interface has no
methods. However, the SmartAdapter must
“implement” it for it to be serializable. The
SmartLogin class needn’t implement Serial-
izable, because one of its ancestors
(java.awt.Component) implements it.

The login() method of the SmartLogin
class simulates a login. It shows a message
like the following one:

Hello Andrei
You have logged as designer and developer

The serialize() method first calls
clearPassw() and then tries to serialize the
user interface of the application. The
clearPassw() method clears the password
stored in a private variable of a TextField
instance.

public void clearPassw() {
tPassw.setText("");
System.gc();

}

After it calls clearPassw(), the serialize()
method uses writeObject() of the
java.io.ObjectOutputStream class to serial-
ize the SmartLogin object, which represents
the application’s window. The writeObject()
method is applied recursively on the mem-
ber variables of the object passed as para-
meter and takes care not to serialize the
same object twice. The OK and profile vari-
ables aren’t serialized because one of them
is static and the other one is transient.

FileOutputStream out = new FileOutput-
Stream(profile

+ ".ser");
ObjectOutputStream s = new ObjectOutput-
Stream(out);
s.writeObject(this);
s.flush();
s.close();

The main() method of the SmartLogin
class first tries to deserialize the user inter-
face. For this purpose the readObject()
method of the java.io.ObjectInputStream
class is used. If the deserialization suc-
ceeds, then the setProfile() method of the
SmartLogin class is called to initialize the
profile member variable, which wasn’t seri-
alized because it’s transient. The show()
method, which SmartLogin inherits from
Frame, will show the window of the appli-
cation.

FileInputStream in = new
FileInputStream(profile

+
".ser");
ObjectInputStream s = new ObjectInput-
Stream(in);
sl = (SmartLogin) s.readObject();
s.close();
sl.setProfile(profile);

sl.show();

If the deserialization fails, then an excep-
tion is thrown. This is caught and shown at
console only if its type isn’t FileNot-
FoundException (the profile files may not
exist if they haven’t been created or have
been deleted). A new instance of the Smart-
Login class is created and the application’s
window is shown.

sl = new SmartLogin(profile);
sl.show();

See Reference 2 for more information
about object serialization.

Control What Is Serialized
While the serialization mechanism is

simple, using it without a minimum analysis
may generate inconsistency, bad perfor-
mances or even security holes. This is actu-
ally true for most applications whether
they use object serialization or not. Fortu-
nately, these problems can be easily solved.

You probably noticed that I used the
transient keyword when I declared the pro-
file member variable. Hence, this variable is
ignored by the serialization mechanism
because the name of the profile can’t be
part of the file without generating worry
about whether an inconsistency will be
determined. Nevertheless, this operation
shouldn’t be made when the SmartLogin
application is running. When the user inter-
face is deserialized, the profile variable is
initialized with a default value. It’s the pro-
grammer’s responsibility to give it a correct
value. This is the reason I called the setPro-
file() method.

Storing constants in the serialization
stream is futile. Therefore, I declared the
OK variable with the static keyword. As
usual, the constants of a class and other

Figure 1: The user interface of SmartLogin app

19VOLUME: 3 ISSUE: 8 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Ad

20 • VOLUME: 3 ISSUE: 8Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

variables that need large amounts of mem-
ory (as precomputed tables) are declared
static, to be shared between the instances
of the class. Note that the static variables
are ignored at serialization and mustn’t be
initialized in constructors because these
aren’t called at deserialization.

There is one more source of information,
the password. For security reasons it must
not be serialized. SmartLogin uses a
TextField component to obtain the pass-
word. However, this component must be seri-
alized because it’s part of the user interface.
The solution is to call the setText() method
of the tPassw object to replace the password
with an empty string. This operation is made
by clearPassw(), which is called whether or
not the user interface is serialized. The
garbage collector is invoked as a supplemen-
tary cautious measure. This should be
enough, but you can never be sure.

If you don’t want a variable to be serial-
ized, then you declare it static or transient.
You might wonder how additional informa-
tion could be stored in serialization
streams. You can add write/readObject()
methods to your serializable classes. These
methods will be called by the write/readOb-
ject() methods of the ObjectOutput/Input-
Stream classes, instead of the default serial-
ization mechanism, which is still available
via defaultWrite/ReadObject(). If this solu-
tion isn’t sufficient, then you can implement
the java.io.Externalizable interface instead
of java.io.Serializable. The externalizable
classes have total control of what is serial-
ized. They also control the format of the
serialized data. See “Object Serialization
Specification” (Reference 2) for details.

Sometimes, you need to serialize informa-
tion to which only authorized persons should
have access. The easiest solution is to put fil-
ters between FileOutput/InputStream and
ObjectOutput/InputStream. These filters
should encrypt/decrypt the information,
which you can store on disk or send over the
network after encryption. However, the
encryption algorithm should be chosen care-
fully because the format of the serialization
stream is public. A safer solution is to com-
bine encryption with the use of externalizable
interface.

Be Sure Your Application Is Closing
The SmartAdapter class is responsible

for the close of the application (Listing 2).
This class is serializable because it imple-
ments java.io.Serializable. The constructor
of the SmartLogin class will create a Smart-
Adapter instance that will be registered as
the listener for some events (Listing 1).
This object will be serialized together with
the user interface because it is referenced
by the components it was registered with.
Still, if SmartAdapter doesn’t implement

Serializable, something strange will hap-
pen. When the application is run for the
first time, everything will seem to be okay.
But at the next run, with the same profile,
the application won’t close because the
SmartAdapter instance couldn’t be serial-
ized at the first run because of a bug in
java.awt.AWTEventMulticaster. (For more
information, see Reference 3, “Serializing UI
Components”. I did report the bug to Sun,
so it may already be corrected by the time
you read this article.)

What Are the Advantages?
From the user’s perspective, the UI per-

sistence is timesaving. The application
becomes friendlier because you don’t have
to repeat the same operations each time
you start it. Resizing the application’s win-
dow together with persistence might be an
unusual solution for a well-known issue; the
fonts and controls have different sizes on

different computers even if the platform is
the same.

From the programmer’s point of view,
object serialization is easy to use. You don’t
need to read “Object Serialization Specifica-
tion” or have work experience with files in
Java (this might be a common case because
many Java programmers develop only
applets, in which the use of streams is
restricted for security reasons). But more
importantly there is no supplementary cost
for code maintenance.

Possible Inconveniences
Some people say that using serialization

for the persistence of the coordinates of
windows wastes space, but this isn’t an
issue in most cases. However, the transient
keyword must be used to separate the
application’s user interface from the text or
the tables edited in windows so that the
application’s data won’t be serialized
together with the interface. The data must
be stored in separate files.

The SmartLogin application isn’t per-
fect. A few users might try to log on with
the same profile at the same time. If they
modify the profile, the changes will be over-
ridden on disk. This problem should be

solved by the login() method, which should
be able to detect the possible conflicts. The
problem isn’t relevant for this article.

Back to My Computer…
Before I stop it, I have to close all the

applications so they can serialize their state.
Only some of them can do that, and some of
them provide “better” persistence than oth-
ers. Wouldn’t it be nice to have a button on
the desktop that would serialize the user
interface of all open applications? This way,
the next time I start my computer, I won’t
have to restart them. This might sound
utopian, because all native applications
should cooperate with the operating system
which doesn’t provide a standard mecha-
nism for serialization. Theoretically, you
might think to save the image of the memo-
ry, the registers of the microprocessor and
the state of the other hardware equipment.
This won’t work and wouldn’t be practical.
Imagine what would happen if the computer
was connected to a network when it was
closed. The applications must cooperate. If
all the applications were written in Java and
they knew how to serialize their state
(another utopia), the listener of a simple but-
ton could save the state of all applications in
a single bytestream that I could send to
somebody, who could continue my work
from the point I left it (this person could be
me moving from one computer to another).
The class files could then be downloaded
from a Web server. This mechanism can
work for a single Java application (an exam-
ple is SmartLogin) and this might be enough.
It’s up to you to implement UI persistence
for your applications.

References:
1. The AWT Home Page

http://java.sun.com/products/jdk/awt/in
dex.html

2. Object Serialization Specification
http://java.sun.com/products/jdk/1.1/doc
s/guide/serialization/index.html

3. Serializing UI Components
http://www.geocities.com/SiliconValley/H
orizon/6481/AltUI11s.html

About the Author
Andrei Cioroianu is an independent Java developer.
He has a BS in mathematics-computer science and an
MS in artificial intelligence. His focus is on 3D graph-
ics (Java 3D), software components (JavaBeans) and
user interface (AWT, JFC). You can reach Andrei for
questions or comments at andcio@hotmail.com.

andcio@hotmail.com

“Lots of code
determines the
current state of
the interface”

The complete code listing for
this article can be located at

www.JavaDevelopersJournal.com

▼▼▼▼▼▼ CODE LISTING ▼▼▼▼▼▼

21VOLUME: 3 ISSUE: 8 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Ad

22 • VOLUME: 3 ISSUE: 8Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

The Widget Factory is a series of articles
(a regular column) dedicated to showing
you how to develop sophisticated user
interface components for your Java pro-
grams. We build on the foundation provid-
ed by Swing and the Java Foundation Class-
es, so the only assumption we’ll make is
that you can compile and run such pro-
grams (this code was tested under JDK
1.1.6 with Swing 1.0.2).

This first installment of The Widget Fac-
tory explores the development of a compo-
nent called JOutlookBar, which resembles
the Microsoft navigation bar provided first
in their Outlook mail client and later in pro-
grams like FrontPage, Project and Team-
Manager.

Figure 1 shows what the finished prod-
uct will look like. The Alan button is high-
lighted because the mouse is over it. The
Dev, Ops and QA buttons allow you to
switch contexts, presenting the user with
lists of different icons. You’ll also notice the
down arrow inside the folder list, which
allows you to scroll down when the list is
longer than the display area. A complemen-
tary up-arrow button appears if the top
part of the list is scrolled up.

The JOutlookBar component is primari-
ly intended to present the user with alter-
native views in an application. This
example demonstrates the basic
mechanics only. The high-level
interface is simple enough. You can
add Action objects to the JOutlook-
Bar component, based on arbitrary
contexts, and have it become useful
immediately.

Decomposition
Sometimes the simplest things

are deceivingly simple. Let’s decom-
pose the component and see what
makes it tick. Figure 2 shows the
various nested pieces. The shading
helps distinguish layers. As you can
see, there are three kinds of but-
tons: the context buttons, which
provide context navigation; the up-

and down-arrow buttons; and the labeled
icon buttons. We also have a number of
nested panels and associated layout man-
agers.

To manage context switching, and to
encourage code reuse, the ContextLayout
and ContextPanel handle everything at that
particular level, making it possible to use
these elements in alternative situations.
The ListLayout is also usable outside this
context. It lays out its children in a vertical
sequence, adjusting position and/or width,
but not height. We try to promote reuse and
remove unnecessary coupling at every
opportunity. The ScrollingPanel works like
the JFC ScrollPane, but uses arrows at the
top and bottom rather than a scroll bar.

Context Management
The ability to switch between contexts

is one of the major features in the JOut-
lookBar. Switching contexts between icon
listings and providing visual feedback
through button positioning is key to the
basic look and feel of this widget. With good
design the coupling can be very loose and
the various classes can be reused more
effectively.

To keep it all generic, we develop the
ContextLayout manager to handle button

placement and center component manage-
ment. We then put user-triggered mechan-
ics into the ContextPanel class so we can
use it outside this component if we want to.
You can think of this arrangement as the
View-Controller separation, where the lay-
out manager handles the view and the Con-
textPanel handles user interaction.

We won’t spend much time on layout
manager design. Instead, check out “Practi-
cal Layout Managers” in this issue. The key
methods here are addComponent, remove-
Component, preferredLayoutSize, layout-
Component and setIndex.

Listing 1 shows the code for adding and
removing components, and for setting the
current active index. The context button is
stored in the tabs vector and we use the
constraint object argument to set the com-
ponent that will be displayed when the but-
ton is pressed. These are stored in the pan-
els vector. The setIndex method sets the
current index value and calls layoutCompo-
nent to recalculate the layout for display.

Listing 2 shows how the preferred layout
size is calculated. The code for getMini-
mumSize is almost identical. The getPre-
ferredSize method calls getPreferredTab-
Size to determine what the largest button
component dimensions are and then takes
the insets into account. Notice that there is
no restriction on the kind of component
you use. Outside the JOutlookBar control,
you could just as easily place labels here
and change the context directly with the

setIndex method.
Listing 3 shows how the compo-

nents are actually laid out. We call
two methods from layoutContainer
to make things more readable. The
layoutTabs method decides where
the index position is and lays out
buttons at the top and bottom of
the display area. The layoutCenter
method figures out where to put
the center component that relates
to the currently active index.

The ContextPanel provides a high-
level view that encapsulates the
behavior. Listing 4 shows the
source code. The constructor sets
the ContextLayout and adds a
BevelBorder as a visual enhance-
ment. Two methods are provided to

JOutlookBar
For the user, alternative views in an application

by Claude Duguay

Figure 1: Outlook bar screen

THE WIDGET FACTORY

23VOLUME: 3 ISSUE: 8 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Ad

24 • VOLUME: 3 ISSUE: 8Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

addTab and removeTab, where the internal
code handles the registration and removal
of button action listeners automatically. A
setIndex method abstracts access to the
ContextLayout equivalent and the action-
Performed method acts on user button
selection.

Figure 3 shows how the ContextPanel-
Test class lets you view three context pan-
els with colored panels in each.

The Scrolling Panel
The ScrollingPanel uses the JViewport

paradigm to allow scrolling within the
window area. It implements a constructor
and only two methods. The setBounds
call is intercepted to deal with window
resizing and we implement the ActionLis-
tener interface to handle button presses.
It’s worth noting that we use the BasicAr-
rowButton from the JFC. This is an
undocumented class. There’s no risk it
will disappear anytime soon since it’s
heavily used by components like JScroll-
Bar and JComboBox, but it’s good to be
cautious with anything that’s not part of
the official API.

Listing 5 shows code for the Scrolling-
Panel constructor, setBounds and action-
Performed. The constructor creates the
arrow buttons and the main viewport and
sets up the panel as an action listener for
each button. The setBounds method han-
dles resizing events by resetting the dis-
play to the top, removing the north button
and adding a south button if necessary.
The actionPerformed event handler does
the scrolling work. Most of it is a matter of
calculating the display area and determin-
ing whether the arrow buttons are
required. If they are, they are added to the
north and/or south position(s). Otherwise
they are removed. The ScrollingPanel is
fully reusable as is, but if you want to
scroll horizontally, you’ll have to extend
the code.

The Icon List
To handle the list of icons in the outlook

bar, we subclass JButton to provide a
RolloverButton class. Our intention is pri-
marily to handle mouse over events, so we
register as a MouseListener and control the
border and color drawing explicitly. The
constructor also sets a number of JButton
attributes to center the icon and text hori-
zontally, and to put the icon above the text
vertically. Listing 6 shows the constructor
and code for handling the mouseEntered
and mouseExited events.

The ListLayout manager provides the
mechanics for placing components vertical-
ly above each other, allowing for various
sizes if necessary. It allows us to control
horizontal justification as well, though we

are interested only in the BOTH setting in
this context. Notice that it’s generally wiser
to build a generic layout manager than one
that is tightly coupled to a specific applica-
tion. If anything, layout managers are meant
to be used in differing contexts, so this is
clearly a good design objective.

Listing 7 shows the layoutContainer
method for ListLayout. It handles various
justification choices, but otherwise simply
keeps track of the bottom position and lays
one component under the previous compo-
nent until none remain. This is useful pri-

marily in containers that scroll vertically,
like a list box.

Wraping It Up
The JOutlookBar class wraps every-

thing together so you don’t have to pay
attention to the underlying code. You
already know everything that’s happening
under the hood, of course, and by now
you’ve probably thought of a few alternate
uses for the classes we’ve already dis-
cussed. All that aside, we need to make it
as easy as possible to use the component,

Context Button

Context Button

North Arrow

Icon and Label

Icon and Label

Icon and Label

South Arrow

Contest Button

Contest Button

ContextPanel

ContextLayout

ScrollingPanel

JViewport

ListLayout

ListPanel

RolloverButton

BasicArrowButton

TabButton

Figure 2: Nested components

25VOLUME: 3 ISSUE: 8 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Ad

26 • VOLUME: 3 ISSUE: 8Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

ADVERTISER INDEXADVERTISER INDEX
Borland 19
www.borland.com 408 431-1000

Bristol Technology 75
www.bristol.com 203 438-6969

Coriolis 77
www.coriolis.com 800 410-0192

Greenbrier & Russel 25
www.gr.com/java 800 453-0347

Halcyon 35
www.halcyonsoft.com 888 333-8820

IBM 58&59
www.ibm.com 800 426-5900

IEC-EXPO 73
www.iec-expo.com 888 222-8734

ILOG 17
www.ilog.com 415 688-0200

Installshield 13
www.installshield.com 800 374-4353

Inno Val 38
www.innoval.com 914 835-3838

Keo Group 22&37
www.keo.com 978 463-5900

Advertiser Page
KL Group Inc. B/C
www.klg.com 800 663-4723

Live Software 41
info@livesoftware.com 619 643-1919

Net Dynamics 79
www.netdynamics.com 650 462-7600

ObjectShare 43
www.objectshare.com 800 973-4777

Object Matter 50
www.objectmatter.com 305 718-9101

ObjectSpace 4
www.objectspace.com 972 726-4100

Object Management Group 53
www.omg.org 508 820-4300

Progress/Cohn & Godly 21
www.apptivity.com 800 477-6473

ProtoView 3
www.protoview.com 609 655-5000

Roguewave 15
www.roguewave.com 800-487-3217

Sales Vision 47
www.salesvision.com 704 567-9111

Silverstream 83
www.silverstream.com 888 823-9700

Sockem Software 65
www.sockem.com 814 696-3715

Stingray Software Inc. 2
www.stingsoft.com 800 924-4223

SunTest 11
www.suntest.com 415 336-2005

Sybex Books 63
www.sybex.com 510 523-8233

The Object People 23
www.objectpeople.com 919 852-2200

SYS-CON Publications 71
www.sys-con.com 800 513-7111

Thought, Inc. 48
www.thought.com 415 836-9199

Visionary Solutions, Inc. 50
www.visolu.com 215 342-7185

WebMethod 33
www.wbmethods.com 888 831-0808

Zero G. Software 6
www.zerog.com 415 512-7771

Advertiser Page Advertiser Page

1/4 Ad1/4 Ad

27VOLUME: 3 ISSUE: 8 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

so the interface looks like this:

addIcon(String context, Action action)

Okay, that should be easy enough for us,

right? Listing 8 shows
the code for this
approach. The context
is created only if it has
not been seen before;
otherwise we look it
up and use the existing
view. We then create a
RolloverButton with
the name and large
icon value from the
Action object. The
large icon property is
not a default property,
so no icon will be pre-
sent unless this value
is associated. Take a
look at the code for
SelectAction to get a
sense of how this
works.

If you don’t know
anything about Action
objects under the JFC,
you’ll want to read up

on it. It’s the preferred method for handling
user interface events. You can subclass
AbstractAction and implement the Action-
Listener interface to deal with what hap-
pens when the user selects the icon. By set-

ting the text and icon properties in the
Action object, you can use them inter-
changeably in this context, in toolbars or in
dropdown menus.

In Closing
This is the first installment of a column I

hope will bring you insight and provide
building blocks you can use in future user
interface design and development projects.
We don’t have a lot of room to explore
everything in great detail, but often what
you really need is the right idea and a good
place to start. The JFC is a great foundation
to build on and I hope the widgets coming
out of our little factory will answer some of
your programming questions. Next month
we’ll develop a JWizard framework that lets
you build wizards without having to worry
about the mechanics.

About the Author
Claude Duguay has been programming since 1980.
In 1988 he founded LogiCraft Corporation, and he
currently leads the development team at Atrieva
Corp. You can contact him with questions and com-
ments at claude@atrieva.com.

claude@atrieva.com

Listing 1.
protected Vector tabs = new Vector();
protected Vector panels = new Vector();

public void setIndex(Container parent, int index)
{

this.index = index;
layoutContainer(parent);

}

public void addLayoutComponent(Component tab, Object panel)
{

if (panel == null) return;
tabs.addElement(tab);
panels.addElement(panel);

}

public void removeLayoutComponent(Component comp)
{

for (int i = 0; i < tabs.size(); i++)
{

if (tabs.elementAt(i) == comp)
{

tabs.removeElementAt(i);
panels.removeElementAt(i);
return;

}
}

}

Listing 2.
public Dimension preferredLayoutSize(Container target)

{
Insets insets = target.getInsets();
Dimension tab = getPreferredTabSize();
int h = tab.height *

(tabs.size() + 1) + (tabs.size() * hgap);
return new Dimension(

tab.width + insets.left + insets.right + (hgap * 2),
h + insets.top + insets.bottom);

}

private Dimension getPreferredTabSize()
{

int w = 0;
int h = 0;
Dimension size;
Component comp;
for (int i = 0; i < tabs.size(); i++)
{

comp = (Component)tabs.elementAt(i);
size = comp.getPreferredSize();
if (size.width > w) w = size.width;
if (size.height > h) h = size.height;

}
return new Dimension(w, h);

}

Figure 3: Context panel

The complete code listing for
this article can be located at

www.JavaDevelopersJournal.com

▼▼▼▼▼▼ CODE LISTING ▼▼▼▼▼▼

28 • VOLUME: 3 ISSUE: 8Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

The year isn’t long, is it? Time seems to
be whipping along at a tremendous pace.
It seems like only a couple of weeks ago
that we were at JavaOne talking over all
things Java with anyone prepared to lis-
ten. We spoke to Sun, IBM and Oracle, to
name but a few of the big boys. Now, Ora-
cle...well, there’s a tale to be told. But first
I’d better introduce this column. I got a bit
excited there.

For those of you new to this fine journal,
let me introduce myself. My name is Alan
Williamson, and I write this Straight Talking
column, which is now creeping into its sec-
ond month. So don’t worry...you haven’t
missed much yet; I’m only warming up.

What’s the purpose of this column, you
ask? What am I supposed to be conveying in
this little piece of magazine real estate? Well,
here in my world I want to take you behind
the marketing hype and give you a real-
world view of Java. I’m one of Java’s biggest
fans, and I stand up for it at every opportu-
nity. I’m not blind or blinkered to its prob-
lems, however. Journeying down the Java
development road isn’t always the blissful
trek we are led to believe. Promises of no
more pointer crashes may be true, but a
host of new problems have been introduced
that make chasing a pointer problem seem
like an absolute busman’s holiday. I intend to
highlight some of them, and, I hope, save
you time if and when you hit the same cir-
cumstances.

Each month I’ll take another character
attribute and, as a bit of fun, apply it to the
world of Java. Last month I looked at trust.
This time let’s take a peep at faith.

What is faith? Collins’ English Dictionary
(1993) tells me it’s a strong belief, without
proof. Sounds like the definition I’ve been
working with for a number of years. As a
developer I generally have faith in what big-
ger companies tell me. For example,
although we employ a number of people, my
company, N-ARY Limited, is small fry when
compared to the corporate giants of, say,
Borland (sorry, Inprise!), Symantec, Sun or
Oracle. Both Borland (sorry, there I go again,

Inprise) and Symantec have been develop-
ing compilers and development tools since
day one. So to say they know a thing or six
about this subject would be an understate-
ment. As Steve Martin uttered in the classic
movie The Man with Two Brains: “When a
woman who has just had brain surgery says
she has a headache, you have to listen.”
Therefore, if one of these companies offers
assistance, since it is coming straight from
the horse’s mouth, you feel you really ought
to follow it.

But every so often even these guys fall over
their own arrogance, and here I am referring
specifically to Oracle and their attitude toward
JDBC, Java’s database classes. So this month’s
public health warning is JDBC drivers.

Before I begin destroying Oracle complete-
ly, I want it known that I believe them to have
one of the best database engines on the mar-
ket today, and they really have some
cutting-edge technology. Oracle8
is a fine piece of software. How-
ever, they don’t have a clue
about Java. As one of the
biggest database companies in
the world, their apparent
neglect of the Java community
is something we should be con-
cerned about. Sure, they
openly promote all these new
Java add-ons and extensions
you can buy from them, but if they can’t even
code a proper JDBC driver for their own data-
base, then doubt has to be cast on their other
Java products.

Let me illustrate this with a problem that
has faced around 90% of Java developers
who have tried to hook their code into an
Oracle database. (I have no way of proving
this figure, of course, but if the newsgroups,
discussions with third-party driver compa-
nies and Oracle themselves are to be
believed, then I estimate the percentage to
be very high.) Now this problem, sadly, is
not unique to Oracle, but at least the other
database companies are openly trying to
rectify the problem. Oracle doesn’t appear
to admit, officially, that a problem exists.

Nonetheless, they illustrate the power and
flexibility of Java with their handling of it.

The JDBC API is a set of classes that
allows developers to safely code database
applications without having to worry about
the specific implementation details of the
back-end database. Thus it allows the devel-
oper the ability to switch to, say, an Oracle
database to replace an MS-Access alterna-
tive without having to recompile their
source code. A fine piece of technology,
assuming you’ve stuck to standard SQL, that
on the whole works extremely well.

The secret to the success of JDBC is the
driver. Now this is a piece of software that
sits between your application and the data-
base. It’s the communication bridge. Its main
role in life is to pass SQL queries to the data-
base and then collate the resulting data from
the execution. It doesn’t sound difficult, but
this area is fraught with danger.

JDBC drivers come in four types. Some
are written in Pure Java, and may be run on
any Java-enabled platform; some are native
libraries written for a specific platform. The

driver type gives an indication of the
amount of native code employed. For

example, types 3 and 4 drivers are
generally Pure Java solutions.
Choosing the driver is an impor-
tant part of the development
cycle. A badly chosen driver will

be slow and in some instances
may crash; a good driver will be

fast and efficient, and will outlive
the life of your application.
Drivers that employ native

libraries generally have a higher chance of
crashing than drivers that are implemented
in Pure Java. Therefore, the tendency to
favor type 3 and 4 drivers is never a bad
thing.

So...back to our story. We had been
implementing a major server-side applica-
tion employing over 80 servlets, all access-
ing an Oracle database. For the sake of con-
venience, all of our developers installed a
local Oracle server on their NT boxes, which
is used to develop and test. Early on, warn-
ing bells began to ring. There were reports of
Java hanging, and General Protection Faults
were observed on a daily basis. Dr. Watson
became a friend to us all. Our database
expert had spoken to Oracle and they

or•a•cle\’or-e-kel,’är-\n.
1. a person believed to make

infallible predictions
You’ve got to have faith?

STRAIGHT TALKING

by Alan Williamson

29VOLUME: 3 ISSUE: 8 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Ad

30 Java DEVELOPER’S Journal • VOLUME: 3 ISSUE: 8 http://www.JavaDevelopersJournal.com

assured us it was the JDBC driver, but have
no fear, Oracle8 will take you on the road to
recovery. Hooray, we thought. We had Ora-
cle8, and a brand spanking new Sun Solaris
box to run it on which was due to arrive any
day, so we lived with the problems.

In the meantime, JavaOne popped up, so
our database expert and I went over there.
We knew we had problems with Oracle, and
we knew we weren’t alone: whenever we
used either of Oracle’s JDBC drivers, we got
GPFs after a short time of use. At this stage
of the game we had committed to Oracle and
couldn’t really change our back end. But we
were very worried about the stability. We
had heard of third-party JDBC drivers, but
thought, well, if Oracle can’t even keep
theirs up long enough, then the outside com-
panies probably won’t have any better luck.

We echoed this concern to one of the
senior Oracle developers at JavaOne. He
assured us that although the version of Ora-
cle we were using, 7.3.3, had problems, Ora-
cle8 should address them. He seemed to
know about the problem and was very confi-
dent in his advice, so we were as well. We
had reassurance from Oracle. We had faith
that Oracle, being the size they are and dom-
inating the database market, wouldn’t let a
problem like this sit for long.

We flew home, happier. Eventually, Ora-
cle8 and the new server arrived. We eagerly
installed both, and spent about two days
configuring the back-end database engine to
all our tables and ensuring it was running as
efficiently as it could. We also installed the
JDBC drivers straight off the CD-ROM. We
then copied our Java packages onto Solaris
and ran the test server up.

You know the feeling you get when you
open a present expecting it to be the one item
you’ve had your heart set on for weeks? And
the letdown you have when you discover
something else? Well, we had the same feeling.

We ran our tests for all of two minutes.
This was as long as the driver stayed up. We
couldn’t believe it. Devastated didn’t come
close to what we were feeling. What were we
going to do? I rang up Oracle and asked for
support. They said, “Sorry, you didn’t buy
any.” I told them, “Excuse me, but I am not
paying for me to tell you about your prob-
lems. If it’s something we’ve done wrong, then
I will pay for support, but otherwise, no.”
Alas, the telephone support didn’t see it quite
like this and hung up. Charming. Now what?

Well, the power of the Internet came into
play. I looked around and discovered a lot of
people who had the exact same problem. I
even found one chap who had collated Dr.
Watson logs, Java dumps, code snippets and
repeatability tests, and he got nowhere with
Oracle. He did, however, point me in the
direction of a San Francisco-based Java com-
pany known as WebLogic. I e-mailed them

and told them my problem. They e-mailed
back – within 15 minutes, I have to say – and
told me not to worry, they had heard our
problem a thousand times, to try this driver
and it will fix our problem. I felt like a dying
man who had just met a set of doctors who
could cure me. It was wonderful.

I downloaded the 30-day trial, installed it
within six minutes and fired up our applica-
tion. Believe it or not, it is still running after
two months of continual use. We didn’t have
to touch a single line of our code, nor did we
have to change any tables. It worked, and
worked well.

But the Oracle driver wouldn’t work for
love or money. We told Oracle, and they
refused to talk to us unless we bought support.
Brilliant. Here we had spent all this money on
Oracle8 licenses, and when it came to the
crunch, the whole system wasn’t working due
to a small JDBC driver. When we swapped in a
third-party JDBC driver, it worked.

WebLogic was fantastic, and after talking
with them for a while I discovered that the
Oracle driver is one of their best product
lines. No wonder. They sympathized with us
and told us many others had also faced this
apparent lack of support from Oracle.

The moral of the tale is that blind faith is
very dangerous to have. Java is much more
than simply coding classes; it’s the deploy-
ment that can make or break the end appli-
cation. And if it’s a database-dependent
application, the whole system can pivot
around one small piece of software that isn’t
even in your control. Choose your JDBC dri-
ver very carefully, and don’t stick to the one
shipped as standard with your database.
You could waste a lot of time.

Sadly, we have joined the mass of Java
developers who no longer have faith in Ora-
cle. I think Oracle needs to take a leaf out of
Sun’s book with regard to how they treat
developers. Once they get over this stupid
support policy they have, maybe we can all
work together and produce a complete pack-
age that works from end to end. I was
reminded by a colleague that if Oracle were
Microsoft, Mr. Gates would probably have
bought WebLogic and deployed it as his
own. This would definitely be a solution, as
at the end of the day what all developers
want is a system that works, something they
can have faith in.

About the Author
Alan Williamson is on the board of directors at
N-ARY Limited, a UK-based Java software company
specializing solely in JDBC and Java servlets. He
recently completed his second book, focusing purely
on Java servlets. In his first book he looked at using
Java/JDBC/servlets to provide an efficient database
solution. You can e-mail him at alan@n-ary.com.

alan@n-ary.com

1/3
Object
Matter

31VOLUME: 3 ISSUE: 8 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Ad

32 • VOLUME: 3 ISSUE: 8Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

JDJ FEATURE

By careful crafting of caching algorithms, we can begin
to tailor the runtime memory management behaviors
in our applications without giving up the type safety
and memory protections given to us by Java.

Caching &
WeakReferences

by Lynn Monson

33VOLUME: 3 ISSUE: 8 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Java brought garbage collection to main-
stream programming. Never before have
commercial software developers been so
aware of the need and benefit of using a col-
lector. Notwithstanding, the benefits of
garbage collection in Java are far from
being completely realized. As larger and
more complex applications are built in
Java, it’s becoming apparent that some
very flexible memory management
schemes are both needed and possible.

In this article I explore a cache you can
build on JDK 1.2 beta 3 that uses WeakRefer-
ences to cooperate with Java’s garbage col-
lector. The cache uses WeakReferences to
take advantage of available system memory
without clogging it with unfreeable objects.
When memory is reclaimed, the cache will
free those objects that are not in use, result-
ing in a better-performing application.
Objects can be cached in memory but don’t
have to trigger memory thrashing.

References and WeakReferences
Before talking about the cache in detail,

we need to explore JDK 1.2’s Reference

objects. Introduced in the java.lang.ref
package, the Reference class stands as the
fulcrum for a body of memory management
classes in JDK 1.2. The intention behind
these classes is to allow an application
developer to interact with the memory
management policies of Java in a type-safe
and extensible way.

The basic idea is to put data inside a
java.lang.ref.Reference class (or subclass)
instead of referring to the data directly
through a variable. The data can be retrieved
as needed from the Reference class, but the
application doesn’t keep a permanent finger
on the data. Under certain conditions, if the
garbage collector determines that only the
Reference object is currently using the data,
it may free the data. This can happen even if
the application is still using the Reference
object that wraps the data.

To illustrate, consider the following
code:

Reference myReference = new WeakRefer-
ence(new String("some string"));

In this example the application has cre-
ated a WeakReference, a subclass of the
base Reference class. Inside the WeakRefer-
ence is stored the string “some string.” The
application refers to the WeakReference
through the variable myReference, but has
no direct access to the string.

Whenever the string is needed, the
application calls the get() method on the
Reference object as follows:

String myString = (String)
myReference.get(); // returns "some string"

The application can then use the string.
For References to do their job, however, the
application needs to release its lock on the
string object by either exiting the scope
where “myString” exists or explicitly setting

the variable to null:

myString = null;

When memory gets
tight, the garbage col-
lector may determine
that the only refer-
ence to the string
“some string” is

through the Reference
object “myReference”.

When this occurs, the
string may be freed even

though the Reference object
that has stored the string is still in

use. This is in stark contrast to the way
memory management happens for any
other class in Java, where transitive refer-
ences are sufficient to keep an object from
being freed. Reference objects are special,
and are specifically handled by the
garbage collector.

The garbage collector doesn’t free a Ref-
erence’s interior object directly, but instead
invokes the clear() method on the Refer-
ence. Invoking this method is the signal to
the Reference that its interior data will be
freed. Once cleared, the Reference object
will return null from the get() method. An
application can detect that the interior data
has been freed as seen here:

String myString =

(String)myReference.get();
if (myString == null)
{
// do something since
// the interior data was freed

}

It’s worth noting some awkwardness in
the Reference terminology. The Java lan-
guage has a language construct, called a ref-
erence, that should not be confused with
the Reference class. The language con-
struct is the way a variable “refers” to its
data, while the class is a first-order entity in
the system. The Reference class is used to
“wrap up” and manipulate the concept of a
language reference, a process known as
reification. The interior data managed by
the Reference class is called the referent of
the class, meaning the thing to which the
Reference class refers.

The specific conditions under which a
Reference class is cleared vary from one
subclass of Reference to another. Some
subclasses are silently cleared while oth-
ers are not, allowing an application to take
action. The basic idea, however, stays the
same.

References and ReferenceQueues
Another aspect of the Reference class

hierarchy is the use of ReferenceQueues for
monitoring state transitions. By registering
a Reference with a ReferenceQueue, an
application indicates that the Reference
should be put into the queue when a signif-
icant state transition occurs. The applica-
tion then pulls the References out of the
queue. What constitutes a “significant state
transition” varies from one subclass of Ref-
erence to another, but is commonly defined
as clearing the Reference. That is, after the
Reference is cleared, it is put into the
queue.

The ReferenceQueue itself is monitored
in two different ways. An application can
poll for items in the queue or can block
waiting for something to enter the queue.
The latter is particularly useful in multi-
threaded applications when there are auxil-
iary system resources associated with Ref-
erence objects. An application dedicates a
thread to monitoring the ReferenceQueue;
when an object is placed into the queue, it
frees up whatever resources are associated
with the reference.

34 • VOLUME: 3 ISSUE: 8Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Caching
Before designing our Reference-based

cache, let’s put down a few requirements. In
a typical cache, arbitrary objects are
stored, identified by a unique key value
and retrieved later. Each key/value pair
is a cache entry. The entries are kept in
memory to improve performance, but
there is no requirement that any given
object be in the cache.

To minimize memory consumption,
a simple cache will limit the number of
entries it can hold. A sophisticated cache
will take advantage of available memory
by using a variable number of cache
entries. When memory gets tight, items are
not in use or memory is being reclaimed,
the sophisticated cache releases some (or
all) of its cache items. In this way the cache
can use available memory without creating
sandbars that the memory manager has to
work around. Our cache will release items
when they are not in use and the garbage
collector is reclaiming memory.

We will base our cache on JDK 1.2’s col-
lection classes. Our cache will implement
the java.util.Map interface. which offers a
simple put()/get() interface. An object is
added via put() and retrieved via get(). We
don’t want the user of the cache to see any
use of Reference objects, so we define the
put/get methods to accept the cached
objects directly.

Listing 1 shows the skeletal implementa-
tion of the cache. This simple implementa-
tion will store and retrieve cached objects
under an applications control. As you can
see from the listing, the class is a trivial
subclass of Hashtable.

This simple cache does not cooperate
with the memory manager. All cached
objects are kept in memory until the cache
is explicitly cleared. Worse yet, the cache
grows in size with each new item put in it.
There is no size limit. To correct these defi-
ciencies, we introduce WeakReferences into
our cache implementation. When an appli-
cation stores an item in the cache, we won’t
store it directly. Instead, we put it inside a
WeakReference and store that instead.
When the garbage collector runs, it is free
to collect the cached data if it is not in use.

Listing 2 shows the new implementation.
As you can see, introducing References into
the design has changed the implementation
substantially. The class is no longer a sub-
class of Hashtable, keeps a private copy of
all cached data, and does some Reference
manipulation. These changes are necessary
because of our requirement that users of
the cache be shielded from the use of Ref-
erence objects.

To ensure that no Reference objects sur-
face outside the cache, we have to guaran-
tee that all of the access points into and out

of the cache are protected. Objects passed
into the cache are immediately wrapped by
a WeakReference. The WeakReference is
stored, but is always stripped off before an
object is handed out of the cache. To
accomplish this, the new cache implemen-
tation makes four core changes:
1. The Cache class is changed to inherit

from AbstractMap. This class allows us to
supply the Map data on demand, strip-
ping off WeakReference wrappers as we
go.

2. The put() method is adapted to wrap the
incoming object with a WeakReference.
Since the put() method is supposed to
return the previous item that corre-
sponds to the cache key, some clerical
work is done to strip off any old WeakRef-
erence layers.

3. Items put into the cache are stored in a
private Hashtable. This Hashtable con-
tains WeakReferences indexed by the

cache keys passed to the Cache.put()
method.

4. The cache implements the AbstractMap
.entries() method. This is the method by
which the Map data is supplied on
demand, and where the cache removes
the WeakReference layer. When the
layer is removed, an additional check is
done to determine whether the
WeakReference has been cleared. If it
has, the WeakReference is removed
from the internal Hashtable and is not

passed back as a result of the entries()
method.
That’s all we need for the basics. The

AbstractMap class drives all other opera-
tions from the values returned by the
entries() method. With that in place, con-
sumers of the cache see a simple put/get
interface and can call the other abstract
Map methods such as containsKey and con-
tainsValue. Additionally, the cache can be
enumerated over, compared for equality
with other caches, searched, etc. The only
operations not supported by the cache are
the collection-based deletion operations.
For clarity, I’ve left that code out of these
examples, but implementing them is a small
extension; we simply change the collection
returned from the entries() call to forward
its modifications to the private Hashtable
of the cache. All in all, we inherit a pretty
complete system from the base collection
classes.

Race Conditions
As you examine the entries() code, you

may question whether the cache accounts
for potential race conditions with the
garbage collector. After all, if the garbage
collector is running at the instant the
entries() method is trying to determine
which items are still available, isn’t that an
error? The answer is no. To understand
why, you should first know that Reference
objects are cleared automically. That is, if
the Reference.get() method returns a non-
null value that the application immediately
uses, the garbage collector will not clear
out the object. Put another way, the
garbage collector performs the test and
clear operations on the Reference as an
indivisible, uninterruptible operation.

In our cache, once the entries() code
has determined that a given Reference con-
tains a non-null referent, a direct Java refer-
ence to that interior object is maintained
and stored. This prevents the garbage col-
lector from freeing the interior object.

To clarify this just a little, consider the
following code:

if (myReference.get() != null)
myHashtable.put("some key",

myReference.get());Figure 1: The CacheTest main window

“Careful
crafting of caching

algorithms can tailor
runtime memory

management behaviors
without giving up

saftey and protection
of Java”

35VOLUME: 3 ISSUE: 8 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

This example has a bug. The problem is
that the garbage collector may run between
the first call to myReference.get() and the
second. It’s possible that the Reference is
cleared in the process. The bug won’t hap-
pen often, but when it does, it will be hard
to find. The example can be corrected as
follows:

Object o = myReference.get();
if (o != null)
myHashtable.put("some key", o);

In this example the object managed by
myReference is directly referred to. This
prevents any race conditions from freeing
the data before it is put into myHashtable.

To Queue or Not to Queue
The attentive reader may wonder why

the WeakReferences are explicitly tested
for null rather than using a Reference-
Queue for the same purpose. The answer
lies in the way Reference objects are
queued. The only guarantee provided by
the ReferenceQueue for WeakReferences is
that each WeakReference instance that has
been cleared will eventually be put in the
queue. There is no guarantee that the
object will be put into the queue at the
time it was cleared, or that it will occur in
a timely fashion. Since we want to ensure

that the user of our cache never sees a
cache item suddenly become null, we can’t
rely on a ReferenceQueue to remove our
cache items fast enough.

Testing the Cache
To test the cache, we want to populate

the cache with objects, simulate the irregu-
lar use of items in the cache, occasionally
run the garbage collector and see if the
right things remain cached. To achieve this,
I wrote the CacheTest program.

This program is implemented by spin-
ning off threads for each of several tasks. A
thread that periodically adds items to the
cache is started. As each item is added to
the cache, another thread keeps a direct
reference to the item for a brief time.
Another thread periodically runs the
garbage collector and prints out whatever
is still left in the cache. The implementa-
tion of these tasks is found in the class
files CacheItemGenerator.java, TimedRef-
erence.java and TimedGarbageCollector
.java.

The user interface for CacheTest is
shown in Figure 1. The main screen pre-
sents several options. The first pulldown
lets you select what type of item should
be added to the cache. The second is used
to determine how often a new item is
added to the cache. The third determines

how long a direct reference to the cached
item is maintained, and the last pulldown
determines how often the garbage collec-
tor is run. Try selecting different combi-
nations.

After choosing a set of parameters,
press the start button and the machine will
be set in motion. After each run of the
garbage collector, CacheTest dumps the
contents of the cache to standard output.
You can identify which items are still in the
cache by their names. Cache items are
named sequentially, “Key 1, Key 2,” etc.
Listing 3 shows a sample run where all time-
outs are set to one second.

The CacheTest threads can be halted at
any time by pressing the stop button. This
allows you to reconfigure the cache para-
meters and run another test.

You should adapt the test program to
try caching your own classes. This is easy
to do by changing the options in the first
pulldown menu. When CacheTest is run-
ning, it uses the default class loader to load
whatever class is identified in the pull-
down. The only requirement is that the
class has a default constructor.

Other Kinds of References
The cache presented here could be

adapted in several ways. In this implemen-
tation I’ve used WeakReferences for the

1/2 Ad

36 • VOLUME: 3 ISSUE: 8Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Listing 1.
import java.lang.ref.*;
import java.util.*;

public class SimpleCache extends Hashtable
{
}

Listing 2.
import java.lang.ref.*;
import java.util.*;

public class Cache extends AbstractMap
{
private Map map = new Hashtable();
public synchronized Set entries()
{
Map newMap;
Iterator iter;

newMap = new Hashtable();
iter = map.entries().iterator();
while(iter.hasNext())
{
Map.Entry me = (Map.Entry)iter.next();
Reference ref =
(Reference)me.getValue();

Object o = ref.get();
if (o==null)
{
// Delete cleared reference
iter.remove();

}
else
{
// Copy out interior object
newMap.put(me.getKey(), o);

}
}

// Return set of interior objects
return newMap.entries();

}

public synchronized
Object put(Object key, Object value)

{
Reference ref =
new WeakReference(value);

ref = (Reference)map.put(key, ref);
if (ref!=null)
return(ref.get());

return null;
}
}

Listing 3.
Garbage collecting
Added class java.lang.String
Cache still holds key 0

Added class java.lang.String
Garbage collecting
Releasing direct reference
Cache still holds key 1
Cache still holds key 0

Releasing direct reference
Added class java.lang.String
Garbage collecting
Cache still holds key 2

Releasing direct reference

cache items. This has the advantage of
freeing items in the cache when they are
not in use and when memory is being
reclaimed. For many applications this is
desirable. For others, however, items in
the cache should be freed only if system
memory is running low. In those environ-
ments it is inappropriate to free items in
the cache merely because they don’t hap-
pen to be in use.

To address that need, the cache can
switch from using WeakReferences to Soft-
References. SoftReferences are cleared by
the garbage collector only when their inte-
rior objects are not in use and when memo-
ry is running low. Additionally, the SoftRef-
erences are subject to a least recently used
algorithm. This meets the above objective.
With beta 3 of JDK 1.2, however, I’ve had
some variableness and problems with Soft-
References. These could be my own bugs,
but because SoftReferences are debug-
gable only in low-memory situations, I

haven’t bothered to track down the prob-
lem. Caveat emptor.

If you have very particular cache needs,
you may also want to investigate using a
GuardedReference. A GuardedReference is
not cleared by the garbage collector.
Instead, the GuardedReferences are put
into a ReferenceQueue when the garbage
collector sees that the interior object is not
in use. It’s up to the application developer
to pull the objects from the queue and clear
them.

Summary
Once you take a garbage collection facil-

ity as a given in your programming, you
can begin to consider new types of memo-
ry management that weren’t open to you
before. The Reference class hierarchy
introduced in JDK 1.2 offers the facilities
for building these new memory manage-
ment structures. In particular, by careful
crafting of caching algorithms, we can

begin to tailor the runtime memory man-
agement behaviors in our applications
without giving up the type safety and mem-
ory protections given to us by Java. With
that in hand, we can begin to build better
commercial applications than we have ever
built before.

About the Author
Lynn Monson is a software Architect at
Novell, Inc. He has some eclectic interests,
including distributed collaboration, machine
learning and pattern based,object oriented,
and Internet architectures. Lynn can be
reached at lmonson@computer.org.

The complete code listing for
this article can be located at

www.JavaDevelopersJournal.com

▼▼▼▼▼▼ CODE LISTING ▼▼▼▼▼▼

lmonson@computer.org.

37VOLUME: 3 ISSUE: 8 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Ad

38 • VOLUME: 3 ISSUE: 8Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

It’s widely known that an applet isn’t
allowed to create a network connection to a
computer that’s not the one from which the
applet itself was loaded. This has led to the
idea that two applets aren’t allowed to com-
municate directly with each other unless
they’re located on the same host. This arti-
cle provides a brief overview of Java’s
Remote Method Invocation (RMI),
describes a small conferencing program
and shows how direct applet-to-applet
communication can be established with
RMI.

RMI’s Overview
Three approaches for programming dis-

tributed systems can be identified. The first
one consists of using a low-level API such
as the java.net package. The second one
uses middleware such as OMG’s CORBA.
The third one consists of using a high level
API such as RMI.

In a nutshell, the advantages of using
RMI over other approaches are:
• Transparency: From the programmer’s

perspective, remote objects and methods
are somewhat like local objects and
methods; the only differences are that
remote classes must implement the
java.rmi.Remote interface and remote
methods must throw the java.rmi.Remo-
teException exception.

• Integration: As RMI is a standard compo-
nent of Java, it supports distributed pro-
gramming in a seamless manner with the
other aspects of the language.

• Automatic object serialization: Java pro-
vides the facility to transfer data not only
among hosts, but also classes and
objects.

• Automatic class loading: If an object is of
a class that is not available on the given
host, the class is dynamically loaded at
runtime.

• Distributed garbage collection: As

objects are moved among hosts, RMI
keeps track of which remote objects are
no longer referenced by clients and
deletes them automatically.

The ability to pass objects among hosts
makes it extremely easy to program appli-
cations in which some classes are both
clients and servers. For example, a
method of a remote class R1 can be called
with a parameter being a remote class R2.
The remote class R1 will then be able to
call any of the methods of the remote class
R2.

A Conferencing Program
In this section I’ll walk you through the

complete code of a small conferencing pro-
gram and show how it takes advantage of
the facilities provided by RMI to achieve
direct applet-to-applet communication. The
program consists of two basic remote
objects (implementing the “java.rmi
.Remote” interface):
• A server that accepts requests from

clients who wish to participate in a dis-
cussion, and requests to identify which
clients are already active

• An applet that participates both as a
client of the server and as the entity noti-
fied when other applets are ready to com-
municate (thus the applet is also a serv-
er)

To explain briefly, each applet registers its
reference in the server, which broadcasts
these references back to all other applets. All
applets now have a reference to all other
applets, which enables them to communicate
directly without having to access the server.
(To prove this, the system allows an applet to
shut down the server.) Each applet displays
the list of other available applets, allows the
user of the system to send messages to other
users and displays incoming messages.

Defining the Remote Interfaces
The first step in writing an applet or an

application using RMI is to define the
remote interfaces to the remote objects in
the application. A remote interface extends
the interface java.rmi.Remote and declares
all the methods that may be invoked
remotely. The two remote interfaces of the
conferencing program are the Talker and
TalkerServer interfaces (see Listings 1 and
2). The Talker interface is used by the
applet to receive notifications from the
server and messages from other applets
while the TalkerServer is used by the serv-
er to receive commands from the applet.
The Talker interface is implemented by the
TalkerImpl class and the TalkerServer inter-
face is implemented by the TalkerServerIm-
pl class.

Creating the Remote Server
The next step is to define the Talk-

erServerImpl class that extends
java.rmi.UnicastRemoteObject. Unicas-
tRemoteObject provides support for
point-to-point object references using TCP
streams. The TalkerServerImpl class (see
Listing 3) has a constructor, a main
method and an implementation for the
methods declared in the TalkerServer
interface. The main method starts the
remote server process, installs a security
manager, creates a registry on port 2006,
creates a TalkerServer remote object and
finally makes this object available via the
registry. The implementation of all the
methods is trivial. Register adds a client
to a private vector and notifies every reg-
istered client that a new member has
joined the group. UnRegister notifies
every client that one of them has left the
session and removes it from the vector.
Lookup returns a copy of the vector, and
shutdown terminates the server. Although
these methods are remote, they differ
from local methods only in throwing
RemoteException.

Implementing the Talker Interface
TalkerImpl (see Listing 4) implements

the Talker interface. The constructor saves
references of the applet and the current
user’s name. The applet is used to update
the user interface; the name is used by

Direct Applet to Applet
Communication with RMI
Pass remote objects in remote calls to allow bidirectional

communication between the applets and the server
and among the applets themselves

JAVA PROGRAMMING TECHNIQUES

by Pascal Ledru

39VOLUME: 3 ISSUE: 8 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Ad

40 • VOLUME: 3 ISSUE: 8Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

other users of the system. Remote users
call the getName method to identify the
current user and call the recvMsg method
to send him messages. The add and remove
methods are called by the server to update
the system’s list of users.

Creating the User Interface
The user interface (see Listing 5) con-

sists of the following components dis-
played in an applet (Figure 1):
• A TextField to enter the name of the user
• A List to show the names of remote users
• A TextArea to display the sent messages
• A TextArea to display the received mes-

sage
• Three buttons to start participating in the

system, stop participating and shut down
the server, respectively

Although the code of the applet is
longer than the code of the other classes,
it is fairly straightforward. The init
method initializes a connection with the
server and contains the code necessary to
lay down the components within the
applet. An ActionListener is added to each
button. StartListener initializes the list of
persons already connected and registers
the current user in the server; StopListen-
er unregisters the user from the server.
ShutdownListener allows the user to shut
down the server to prove that once con-
nections among users are established, the
server is not needed anymore. A KeyLis-
tener is also added to the TextArea han-
dling the messages to be sent. The
initList, addTalker and removeTalker
methods update the list of users. The
addToMsg method displays an incoming
message.

Installing the System
This system is based on an applet

accessing a server and other applets with
RMI. Therefore, it will work only with a
browser supporting all of the features of
JDK1.1. For this experiment I used HotJava
running on several PCs while the server
was running on a UNIX machine. The sys-

tem is easy to configure; the only require-
ment is that the server must be located on
the same host as the HTTP daemon. The
HTML file is shown here:

<HTML>
<TITLE>Talk</TITLE>
<APPLET code="TalkerApplet.class" width=550
height=450>
</APPLET>
</HTML>

Conclusion
In this article, I have shown how to take

advantage of the facilities provided by RMI
to pass remote objects in remote calls to

allow both bidirectional communication
between the applets and the server and
among the applets themselves. This short
example also demonstrates that direct
applet-to-applet communication is, in fact,
possible.

About the Author
Pascal Ledru is a software engineer specializing in
networking applications at Aerospatiale, Inc. He is
also working on his Ph.D. in computer science at the
University of Alabama in Huntsville. Pascal may be
reached at pledru@worldnet.att.net.

Listing 1.
import java.rmi.*;
public interface Talker extends Remote {

public String getName() throws RemoteException;
public void recvMsg(String from, String msg) throws RemoteException;
public void add(Talker talker) throws RemoteException;
public void remove(Talker talker) throws RemoteException;

}
Listing 2.
import java.rmi.*;
public interface TalkerServer extends Remote {

public void register(Talker talker) throws RemoteException;
public void unRegister(Talker talker) throws RemoteException;
public Talker[] lookup() throws RemoteException;
public void shutdown() throws RemoteException;

}

pledru@worldnet.att.net

Figure 1

The complete code listing for
this article can be located at

www.JavaDevelopersJournal.com

▼▼▼▼▼▼ CODE LISTING ▼▼▼▼▼▼

41VOLUME: 3 ISSUE: 8 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Ad

42 • VOLUME: 3 ISSUE: 8Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Cold Fusion
1/2 Ad

PBDJ
1/4 Ad

6.0
1/8 Ad

CPD
1/8 Ad

43VOLUME: 3 ISSUE: 8 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Software developers invest
a great deal of time, effort
and money to bring a
product to market.
Whether it’s a complete

Java application, an
applet for a Web site or a

JavaBean component that per-
forms some cool new function, you as a
developer have a right to protect the inner
workings of your Java classes from prying
eyes. After all, you don’t want someone
looking at your super-secret algorithm or
trying to analyze your classes to find poten-
tial security holes. Many developers feel
confident that when they compile Java
source code to bytecode, their classes will
be safe. After all, who can read bytecode like
a third-generation language?

Unfortunately, other developers don’t
have to. Decompilers allow unscrupulous
developers to reverse-engineer your prod-
uct and to extract source code from it. They
allow others to access your or your compa-
ny’s intellectual property, the code that is at
the heart of your application. It’s a sad fact
of life, but reverse engineering does occur.
While there are laws to protect against intel-
lectual property theft, the best defense is
not to allow it to happen in the first place,
by protecting your code from such tools.
That’s where SourceGuard comes in!

How Does SourceGuard Work?
SourceGuard takes existing Java class

files and modifies them to protect against
decompilation. You create a project, define
the level of protection on a class, method
and field level, and then allow SourceGuard
to modify your classes. SourceGuard is
capable of renaming classes, methods and
fields, as well as removing extra debugging
information and modifying the control flow
of bytecode.

When SourceGuard is run, either manu-
ally or from the command line, it produces
new copies of your classes that can then be
redistributed. SourceGuard doesn’t modify
your original source code, only the com-
piled classes. This means that you as a
developer don’t need to be concerned with
writing cryptic code or changing your vari-
able names. SourceGuard does it all for you,
and then produces protected classes.

Installing SourceGuard
SourceGuard is easy to install, and

requires a JDK 1.1.5+ virtual machine with
JFC. After you’ve downloaded the software
from 4thpass’s Web site, you need to run the
installation application. SourceGuard uses
InstallShield, which makes installation sim-
ple. You’ll need to specify a password to use
the trial edition, which is sent to you via e-
mail when you register. There are two instal-

lation options: you can use either a Windows
executable or an installation class file. If you
run the Windows executable, SourceGuard
will ask you to select a Java Virtual Machine
from a list it detects. Then you simply speci-
fy the installation path. Otherwise you can
run the installation class file with whatever
Java virtual machine you like.

Using SourceGuard
Using SourceGuard to protect your appli-

cations and applets is quite simple. After
compiling your Java source code, you can
run SourceGuard. It’s a straightforward
process to apply SourceGuard to Java class-
es, thanks to the Project Wizard that guides
you through the task of creating project
files. It requires you to specify a directory
location for your Java classes, an output
directory and your classpath. It’s important
to specify the correct classpath for any

▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼
SourceGuard
Professional Editiion
4thpass
810 32nd Avenue South
Seattle, WA 98144
Phone: 206-329-7460 Fax: 206-329-7480
Web: www.4thpass.com
E-mail: sales@4thpass.com
Requirements: Platform: JDK1.1.5 with JFC 1.0.1
Price: $599 download, $649 CD-ROM shipment

SourceGuard
by 4thpass

PRODUCT REVIEW

▲
▲

▲
▲

▲
▲

▲
▲

▲▲▲▲▲▲
▲

▲
▲

▲
▲

▲
▲

JA
VA

developer’s journalJDJ
World class

 AWARD

by David Reilly

Protect your code from reverse engineering!

Decompilation with Mocha
i1 = B.getTime() - object.getTime();
i1 /= 1000;
j1 = (int)i1 % 60;
i1 /= 60;
k1 = (int)i1 % 60;
i1 /= 60;

Original source code
// Calculate difference in dates long numericalDifference =

m_Date.getTime() - currentDate.getTime();

// Divide by 1000 to find number of seconds difference
numericalDifference = numericalDifference / 1000;

// Get seconds
int seconds = (int) numericalDifference % 60;

// Get minutes
numericalDifference = numericalDifference / 60;
int minutes = (int) numericalDifference % 60;

Decompilation with Java
l = (this.B.getTime() - ((java.util.Date)(obj)).getTime());
l = (l / 1000);
i4 = (((int)l) % 60);
l = (l / 60);
i3 = (((int)l) % 60);
l = (l / 60);

Table 1: Original and decompiled source code, after SourceGuard protection

44 • VOLUME: 3 ISSUE: 8Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

external libraries you use; otherwise you
can run into problems. This includes the
basic JDK packages as well. Figure 1 shows
the Project Wizard in action, and how to set
the classpath and output directory.

Once your project is complete, you can
begin to assign rules to your classes. Source-
Guard is extremely flexible, and allows you
to assign different rule categories. Each
class can have a category applied to it, or a
class can be left unprotected. SourceGuard
defaults to three categories, but you can add
more as required. For example, if you’d like
to treat the class with your main method dif-
ferently from your proprietary packages,
you can assign minimal protection for one
and maximum protection for another. From
the Class View menu, which can be seen in
Figure 2, allows you to specify which meth-
ods and fields should be protected, and
which should be left alone.

Once you’ve created and customized
your project settings, protecting your Java
classes is a breeze. Simply select the build
menu option, or click on the build icon, and
SourceGuard will create protected classes
and place them in your project’s output
directory. This process can even be auto-
mated as part of your build process. Source-
Guard provides a batch file and a Unix
script, which takes as a parameter the name
of a SourceGuard project. Simply run
SourceGuard from your build tool and it will
automatically protect your projects.

Protection from Decompilers
SourceGuard offers protection from

decompilers and other reverse-engineering
tools that seek to recreate the source code
for Java class files. Several decompilers for
Java are freely available. The two decompil-
ers I used for testing were Mocha and
DejaVu (distributed as part of the Object
Engineering Workbench for Java). After cre-

ating a protected application, an applet and
a JavaBean, I used the popular Mocha
decompiler, and the results were reassuring.
SourceGuard had taken my carefully named
variables and replaced them with meaning-
less names. SourceGuard can also do the
same with method and class names. As you
can see from Table 1, decompiled code can
be difficult to understand. When compiled
with Mocha or DejaVu, variables have been
replaced with meaningless names.

Decompilation with DejaVu
SourceGuard can also give you added

protection that goes beyond renaming vari-
ables, classes and methods. It has the
option to modify the control flow of Java
class files, using its Bytecode Range Modifi-
cation feature. When a method contains
try/catch blocks, SourceGuard modifies the
bytecodes to help prevent decompilation.
With bytecode range modification enabled,
Mocha and DejaVu were unable to correctly
decompile methods that contained
try/catch statements. This feature isn’t
enabled for all rule categories by default,
however. You should make sure it is turned
on if this level of protection is appropriate
for your project, because it will make
decompilation much more difficult.

Conclusion
SourceGuard offers significant protec-

tion against decompilation of Java classes
by others. While not impossible, it makes
the task of understanding decompiled code
much less likely. The success of protection
will vary from project to project; in general,
however, the code produced is much more
difficult to interpret than without Source-
Guard’s protection. If you have a small
applet that has few methods and fields, it
may be possible for someone to make rough
assumptions about how the applet works.

However, more complex examples with long
methods become quite difficult to under-
stand. Without the original source in front of
me, it would be an extremely frustrating and
time-consuming process. Furthermore, for
methods that contained try/catch blocks
and were protected by bytecode range mod-
ification, Mocha and DejaVu failed to pro-
duce valid source code.

While it doesn’t prevent people from try-
ing to interpret your applications, it does
make the task extremely difficult and tips
the effort-to-reward ratio in the original
developer’s favor.

Running your source code through a
decompiler makes you aware of just how
vulnerable unprotected classes can be. I’d
feel much more confident that my source
code is safe when it’s protected against
reverse engineering and decompilation by
SourceGuard. Given the choice between
releasing unprotected classes and classes
run through SourceGuard, I’d take Source-
Guard any day!

Resources
1. SourceGuard, from 4thpass;

www.4thpass.com
2. Mocha the Decompiler;

www.brouhaha.com/~eric/computers/mo
cha.html

3. DejaVu the Decompiler, distributed as
part of OEW; www.isg.de/OEW/Java/

About the Author
David Reilly has worked on network protocols and
Web-related programming at Bond University, Aus-
tralia. Since his conversion to Java in 1996, he has
worked almost exclusively with the language, finding
it both a joy to use and the most productive way to
produce portable applications. David can be contact-
ed by e-mail at java@davidreilly.com.

java@davidreilly.com

Figure 2: SourceGuard Class and Rule Manager allows you to customize
the level of protection on a class, field and method basis.

Figure 1: Specifying a Java classpath for external
packages, and setting an output directory

45VOLUME: 3 ISSUE: 8 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

46 • VOLUME: 3 ISSUE: 8Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Our dreams of having the world at our fin-
gertips have been realized in large measure
by the advent of the World Wide Web and
Web browsers. The Java Platform gained
much of its popularity due to its inherently
distributed nature and its implicit support for
the Web. The Java-based products that are
defined under the platform for facilitating
Web-based development are a major factor in
this support.

This month we will peer into The Cosmic
Cup to look at the products from Sun
Microsystems that support the Web- and
browser-based application development.
Please note that while a wide range of Web
products and APIs are available from several
vendors, this column currently focuses on
those provided by JavaSoft/Sun Microsys-
tems Inc. These are base products, closely
linked with the APIs defined under the scope
of the Java Platform, which is why I want to
focus on them.

The Web Products
Web products that facilitate the develop-

ment of Web-based applications are listed
below and illustrated in Table 1. Subsequent
paragraphs examine the products individual-
ly. Links for detailed information on all prod-
ucts mentioned may be obtained from Sun’s
Java Web site at http://java.sun.com/prod-
ucts.
• HotJava Browser
• HotJava HTML Component
• HotJava Views
• Java Plugin
• Personal WebAccess
• Java Web Server
• JavaServer Engine

HotJava Browser
HotJava Browser (HJB) is a modular

browser that may be used for creating and
deploying Web-enabled applications and sev-
eral different environments and devices. It’s a
lightweight browsing solution that can scale
to provide a solution for a variety of devices
ranging from NCs to desktop PCs.

HJB allows developers to custom-build a

browser with a highly customizable interface,
depending on the application or device it tar-
gets. Customization is achieved through the
use of text-based properties files. It provides
flexibility in the look and feel for the UI for the
application. The HotJava Browser supports
various Internet standards and protocols
including: Java applets, HTTP, HTML, tables
and frames, persistent cookies, mulitmedia
formats, file and mail transfer protocols,
secure sockets layer (SSL) and international-
ization.

HotJava Browser is a commercial product
available from Sun Microsystems, Inc.

HotJava HTML Component
The HotJava HTML Component is a Jav-

aBeans component that provides functionali-
ty for parsing and rendering HTML. It may be
viewed as the HotJava Browser without the
user interface. Instead, its interaction with
other components is provided via the Jav-
aBeans paradigm. It is a full-fledged browsing
component that offers support for the same
Internet standards and protocols as the Hot-
Java Browser.

This product provides Web access to thin-
client devices such as screen phones and
NCs. The proprietary user interface for these
devices is meant to be provided by the ven-
dor. The HotJava HTML Component is also
targeted to ISVs and corporate in-house
developers who would like to incorporate
HTML viewing into their applications. In addi-
tion, it may be used to plug and play with
other JavaBeans components to create full-
featured applications.

HotJava HTML Component is a commer-
cial product available from Sun Microsys-
tems.

HotJava Views
HotJava Views (HJV) software incorpo-

rates an environment and a set of tightly inte-
grated corporate communication tools for e-
mail, calendar management, name directory
and Web browsing. It is used for enterprise
deployment of a server-centric WebTop client

using a graphical suite of deployment tools.
HJV software is centrally installed, config-

ured and managed at the server, which signif-
icantly reduces client administration. It pro-
vides support for multiple platforms and sup-
ports internationalization and localization.
The HJV software consists of the following
components:
• Selector/sliding panels: Customizable GUI

elements for accessing applications and
information.

• MailView: A simple IMAP4/SMTP-compli-
ant mail client that enables editing, sending
and saving e-mail while providing extensive
integration with other tools.

• CalendarView: A personal and group cal-
endaring tool that provides calendaring
and scheduling capabilities.

• NameView: A LDAP/JNDI-compliant tool for
accessing corporate-name databases. It
enables users to view an enterprise name
directory that can be created from within
HotJava Views or downloaded from exist-
ing enterprise directory databases.

• WebView: This is an HTML-compliant Web-
browsing tool for the intranet. It may be
used as a constrained browser that permits
access to predesignated URLs only, or as a
full-capability browser that enables access
to any URL.

• Administration tools: Comprehensive tools
(applets) for configuring and managing
WebTop clients. These may be used to con-
figure other HJV components as well as
user profiles.

HotJava Views software is bundled with
Sun's JavaStation and with network comput-
ers made by other manufacturers.

Java Plugin
Java Plugin (formerly known as Java Acti-

vator) runs Java applets or JavaBeans com-
ponents in an HTML page using Sun’s Java
Virtual Machine (JVM) inside Microsoft Inter-
net Explorer (IE) on Win32 platforms, or
Netscape Navigator on Win32 and Solaris
platforms.

Since Web browsers are usually a couple
of steps behind the latest release of the JDK,
they cannot use the features available in the
latest Java Runtime Environment. For exam-
ple, Netscape and IE browsers do not cur-

Closely linked Java APIs that support Web and
browser based application development

Web Products

COSMIC CUP

by Ajit Sagar

47VOLUME: 3 ISSUE: 8 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

rently support the latest features of JDK 1.1
such as JavaBeans, RMI and JNI. Java Plugin
ensures that enterprise developers can use
all the features and functionality of the latest
Java. JDK ensures that they can deploy 100%
Pure Java applets on their intranet. The cur-
rent Java Plugin is ready for JDK 1.2 and the
Java HotSpot virtual machine with an archi-
tecture that makes upcoming features avail-
able today.

Java Plugin is a free product available from
Sun Microsystems.

Personal WebAccess
Personal WebAccess is a customizable,

compact Web browser for devices running
the PersonalJava platform. It supports Inter-
net standards including HTML 3.2, HTTP 1.1,
tables, frames and Java applets. It has a small
footprint that makes it suitable for consumer
devices such as desktop screen phones or
Web phones, set-top boxes, car navigation
systems, high-end cell phones and other
mobile hand-held devices.

Personal WebAccess is designed as a col-
lection of JavaBeans components. It allows
device manufacturers the flexibility to choose
the level of functionality they need with
choices ranging from a base HTML rendering
engine to a full-fledged Web browser. Person-
al WebAccess will support SSL and I18n in its
next release.

This product offers a user interface
designed to accommodate the smaller dis-
plays of consumer devices. The interface is
customizable, allowing device manufacturers
the flexibility to create a fully tailored Web
browser that fits the look and feel of their
product line.

Personal WebAccess is a commercial
product offered by Sun Microsystems and

was developed in collaboration with Spy-
glass.

Java Web Server
The Java Web Server (JWS, formerly

known as Jeeves) is a cross-platform Web
server written in Java. It provides implicit
support for the Java servlet API, SSL, digital
signatures, Access Control Lists (ACLs) and
proxy support. The salient features of JWS
are:
• Cross-platform functionality: Since JWS is

completely written in Java, it is truly cross-
platform.

• Servlet API: JWS inherently provides sup-
port for the Java servlet API. Servlets are
protocol-independent and platform-inde-
pendent server-side components, written
in Java, that are basically an alternative for
CGI scripts.

• Page compilation: Page compilation allows
server code to be embedded in an HTML
file. As a result, changes can be made to the
server with no recompilation of the code,
thus allowing the option to customize Web
content from the client side.

• Session tracking: Session tracking is a
mechanism for building a sophisticated,
stateful model on top of the Web’s stateless
protocol. With this feature, session state is
maintained by the server.

• Administration applet: The administration
applet is a set of GUI-based tools that pro-
vide a single point of control and facilitate
installation management of a Web site. It is
used to install the JWS.

• Presentation templates: Presentation tem-
plates are a content management feature
that allow HTML content to be independent
of the overall look and feel.

• SSL support: JWS provides standard SSL

(secure socket layer) support for secure
communication.

• Secure area sandboxes: JWS supports
secure area sandboxes that allow Java
servlets, like applets, to be isolated in pre-
defined spaces so they are secure.

• Digital signature: JWS provides support for
digital signatures that allow servlets to run
securely outside the sandbox.

• Access control list (ACL): JWS supports
ACLs, which are used to control access to
specific Web site files or servlets.

• Proxy support: JWS supports proxy disk
caching.

The JWS is available as a commercial
product from Sun Microsystems.

JavaServer Engine
The JavaServer Engine is a collection of

reusable Java classes that automate connec-
tion management, security and administra-
tion to simplify the development and deploy-
ment of network-enabled server-based appli-
cations. It is a product targeted at value-
added resellers, system integrators and ISVs.

Developers can leverage the JavaServer
Engine in their applications and are provided
simplified connection management, data
security and user authentication. The prod-
uct also provides a Web-based server. The
JavaServer Engine also provides applet-based
administration and native support.

The JavaServer Engine provides a finer
granularity of control over the HTTP protocol
as compared to JWS, which is an out-of-the-
box Web application solution. Application
extensibility is accomplished through
servlets.

The JavaServer Engine is a commercial
product from Sun Microsystems; pricing and
availability have not been announced yet.

Cosmic Reflections
The Web and the Internet have been

instrumental in defining the Java Platform
APIs as well as in the development of prod-
ucts initially offered as Java-based solutions
to industry problems. The very nature of the
Java Platform makes it an ideal environment
for development of solutions in the
client/server world. It will be interesting to
see how these products evolve from the
client/server realm to enterprise solutions-
based on distributed computing.

About the Author
Ajit Sagar is a member of the technical staff at i2
Technologies, in Dallas, Texas. He holds an MS in
computer science. Ajit focuses on networking, UI and
middleware architecture development. He’s a Java
certified programmer with 8 years’ experience. You
can e-mail him at Ajit_Sagar@i2.com.

Product Description
HotJava Browser: A lightweight Web browser that is targeted to developing Internet-

aware and intranet-aware applications and devices
HotJava HTML Component: A JavaBeans component that supplements the HotJava browser for

displaying HTML; supports Internet standards such as HTML 3.2,
frames and tables, HTTP

HotJava Views: Enables enterprise deployment of a server-centric cross-platform
WebTop client

Java Plugin: Provides enterprise customers with the ability to specify use of Sun's
implementation of the Java Runtime Environment instead of the
browser’s default JVM

Personal WebAccess: Offers a compact Web browser for devices that run the PersonalJava
platform; supports Internet standards including HTML 3.2, frames,
tables, cookies

Java Web Server: A Web server used for developing network servers in the Java pro-
gramming language; includes extensive support for servlets

JavaServer Engine: A collection of reusable Java classes that automate connection man-
agement, security and administration to simplify the development
and deployment of network-enabled server-based applications

Table 1: The Web products Ajit_Sagar@i2.com

48 • VOLUME: 3 ISSUE: 8Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

JDJ SPREAD

49VOLUME: 3 ISSUE: 8 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

 JDJ SPREAD

50 • VOLUME: 3 ISSUE: 8Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

When Sun Microsystems introduced the
Java programming language in May 1995, it
handed developers the programmer’s
equivalent of the holy grail. Java’s promise
of write once, run anywhere proved real.
For the first time, developers could write
their source code just once, run it across
multiple platforms without modification
and generate bit-for-bit identical results.
Now, less than three years later, Java tech-
nology has become more than just a wildly
popular development environment; it has
enabled the creation of a whole class of
new computing devices called “thin-clients”
that were not imaginable three years ago.

The Java Model
Following a close examination of the

Java environment, Sun concluded that it
could significantly enhance the Java para-
digm by migrating the execution of byte-
code instructions from software in the Java
Virtual Machine to hardware in a Java
processor. Even with this Java processor
implementation, however, the Java Virtual
Machine and its overhead remains. Indeed,
it is required to execute Java code, because
the Java Virtual Machine is a fairly complex
piece of code that does far more than sim-
ply execute bytecode instructions. Its func-
tions also include:
• Verification: Prior to passing the code

along for execution, the Java Virtual
Machine establishes that the program is
legal and well behaved. This is an impor-
tant part of the overall Java security
model, making the transmission of com-
puter viruses impractical in Java pro-
grams.

• Class loader and garbage collection:
The Java programming language loads
and purges code as necessary. These
modules provide the runtime memory
management operations necessary to
keep the system running efficiently.

• Thread Manager: The Java Virtual
Machine keeps track of the various spe-
cific concurrent strands of operation and
sees that they execute without bumping
into each other.

Java Without Execution Overhead
The Java Virtual Machine executes Java

programs through a translation mecha-
nism, using either an Interpreter or a just-
in-time (JIT) compiler to convert bytecode
instructions into machine instructions that
the underlying CPU can understand and
execute. This conversion process

inevitably adds some overhead to the task
of program execution, that is, it takes time
(affecting performance) and consumes
resources (affecting cost).

Fortunately, the burden of overhead is
not fixed; it may be shifted depending on
circumstances. If ample time is available for
program execution (because, e.g., the appli-
cation is I/O bound), a simple interpreter
that consumes little in the way of machine
resources can be used to translate byte-
code programs. If ample hardware
resources are available (e.g., in a power
desktop or server system), an advanced JIT
compiler that enables high-performance
execution can be used.

The bottom line for program translation,
however, is that it involves overhead in
some form or other, either time (if
resources are not available) or resources (if
time is not available). The difficulty comes
when both are in short supply, as is often
the case in embedded applications. Under
these circumstances developers generally
regard Java programming as impractical,
however desirable the principle might be

ANYTHING NEW UNDER THE SUN

Drives new markets for networked
appliances in the home, the car

and in your hand

by Harlan McGhan

Emerging picoJava
Processor Architecture

Embedded computer systems, common in
manufacturing and factory automation, are
used to control or monitor parts of a manufac-
turing process. They vary from large systems
that control a complete machine to small sys-
tems, often single-board computers, that may
monitor a single process sensor such as an
oven temperature, tank level or chamber pres-
sure. While not as immediately obvious or as
sexy as the smart appliances or set-top boxes,
industry estimates put the total market for fac-
tory automation equipment at over $3 billion by
the year 2000.

Factory automation sensors are becoming
smarter. They’re better at passing real-time and
near real-time information and using networks.
This is important since, unlike traditional busi-
ness information, much of the plant floor data is
transient and the many decisions involved in
controlling equipment are made rapidly, based
on fast-changing information. However, while
many sophisticated manufacturing facilities use
an Ethernet network with TCP/IP on the plant
floor to connect vital information sources, most
of the sensors and small pieces of equipment
are left out of the loop. Instead, a number of

industrial networks, such as DeviceNet, ProfiBus
and FieldBus, have been developed to handle
the data communication for these sensor sys-
tems. The success of these industrial networks
can be attributed in part to the lower hardware
cost and simpler networking software. Usually
these systems hide the networking
complexity from the software devel-
oper, who may then concentrate
on the problem of building the
sensor interface and the logic to
support it (rather than networking
and information transport).

While information can be
passed from these separate indus-
trial networks to an Ethernet sys-
tem on the plant floor, this process involves a
router or, more commonly, a crude gate-
way. This creates data disconnects between the
two networks. Integration on the plant floor
would be improved by having these sensors
and systems on the same networking architec-
ture -- Ethernet and TCP/IP – which the
JavaChip provides. Single-board computers
based on the JavaChip bring the promise of
almost transparent networking capabilities in a

Smart Industrial Sensors Using the JavaChip

http://www.JavaDevelopersJournal.com 51Java DEVELOPER’S JournalVOLUME 3 ISSUE 8 •

for using the technology.
Java processors were developed to

address precisely this problem. They are
based on a new core CPU technology called
picoJava, that reads and executes bytecode
instructions directly in hardware. Conse-
quently, Java programs execute on a Java
processor without translation. In effect, for
a Java processor, bytecode instructions are
already machine instructions. Direct execu-
tion of bytecode instructions completely
eliminates the requirement to sacrifice
either time or machine resources. Java pro-
grams running on a Java processor execute
as efficiently as possible, combining the
high performance of quality JIT compilers
with the negligible resource requirements
of the simplest interpreters.

Java processors, therefore, enable a new
breed of thin clients powered by Java that
are more powerful and less expensive than
would otherwise be possible. These devices
are able to run Java code at machine speeds
without using the expensive combination of
a high-performance CPU, a sophisticated JIT
compiler and an expansive memory subsys-
tem. Eliminating these otherwise essential
costs without compromising performance
delivers the optimum in price/performance
to the customer.

Legacy Code Compatability
Even with the wide acceptance and popu-

larity of Java technology, Sun recognizes that

Java is a new development environment, and
that as a result even emerging, thin-client
systems, such as network computers, may
have to run some amount of existing code
written in other languages. To make it easier
for thin clients to handle legacy code, the
picoJava technology at the core of Sun’s
JavaChip processor has been designed, not
only with the capability to execute code writ-
ten in any programming language, but also
non-Java code as well as any comparable
RISC processor. As a result, Java processors
can extend the life of legacy applications, let-
ting companies leverage their existing soft-
ware resources while simultaneously easing
their transition to Java.

Picking the Right Time to Transition
to Java Processors

Given the ability of Java processors to
execute Java and non-Java code, there is
no reason to wait until all, or almost all, of
the code base has migrated to the Java lan-
guage before switching to a Java processor.
You don’t have to wait until a majority of
the code base consists of Java programs.
Rather, it makes sense to start thinking
about using a JavaChip processor as soon
as Java programs make up any noticeable
fraction of the application workload -- espe-
cially if the you expect that more and more
of the future workload will consist of Java
programs and less and less code will be
written in other languages. The non-Java

programs will run as well as they would on
any other processor, and the Java pro-
grams will run much better.

Java Processors: The Best
Choice for the New Computing
Environment

Java is enabling the creation of a whole
host of new computing devices, including
network computers and other thin clients
such as set-top boxes, smart phones and
home automation systems. Because all of
these devices are meant to be high-volume,
low-cost products, relatively small differ-
ences in price and performance can mean
the difference between success and failure
in the mass market. When unit volumes are
measured in the millions, there is no such
thing as a “minor” cost savings -- every
penny saved is millions of pennies saved,
every dollar saved adds up to millions of
dollars. An MB of RAM can be purchased for
as little as $4 today, and no doubt still less
tomorrow. But while memory may be cheap
and getting cheaper, it will never be free.
Since JavaChips enable Java programs to
run faster using less memory, a JavaChip
can provide critical efficiency for high vol-
ume devices, returning many millions of dol-
lars to the bottom line of those companies
with the foresight to adopt them.

Java processors, then, are ideal to
power an emerging generation of new, high-
volume computing devices. Indeed, they
have been designed with these types of
devices in mind, delivering the kind of
economy, power and compatibility critical
to their success. If Java was the fuel that
ignited the explosion of new computing
devices, JavaChips will be the engines that
drive them into the future.

The picoJava architecture has been
licensed from Sun by IBM, LG Semicon, Fujit-
su, Rockwell and NEC. Siemens Semiconduc-
tor has licensed the Instruction Set Architec-
ture for use in Smart Cards. In addition, Sun
has recently received an endorsement from
Visa International regarding a Java specifica-
tion for smartcard applications. In a round-
table discussion at the JavaOne conference,
Fujitsu, Siemens and IBM all predicted that
products would be available by the end of
1998.

About the Author
Harlan McGhan is the group manager of architecture
marketing for Sun Microelectronics, responsible for
product roadmaps, product definitions, competitive
analysis, and both SPARC and JavaChip processor
evangelism. McGhan has a BA in philosophy from
Michigan State University and an MA and ABD in
logic and history of science from Princeton University.
You can e-mail him at harlan.mcghan@Eng.sun.com.

harlan.mcghan@Eng.sun.com

relatively low-cost system. Java supports tradi-
tional network techniques such as network
“sockets.” Furthermore, the object-oriented
architecture allows much simpler information
transport, especially Java’s Remote Method
Invocation (RMI), which allows an object on the
sensor to call a remote object in a manner
almost transparent to the developer.

While these techniques are effective and
simple, the JavaChip can also support the more

powerful enterprise standards such as
CORBA. With a CORBA ORB for

EmbeddedJava or the
JavaChip’s MicroJava,

these sensors can now
interconnect to the entire

manufacturing software sys-
tem. This might include direct

input to the front-office applica-
tions such as planning and schedul-

ing. With this wide range of options
designers using JavaChip-based systems can
improve information management and integra-
tion. Using JavaChip-based single-board com-
puters, even the smallest of sensors can be
fully and smoothly integrated into the manu-
facturing network without changes in network
topologies.

On both large and small embedded systems
the cross-platform capabilities of Java simplify
development and lower the total system cost.
Complete applications can be developed using
the productive Java development environments
on UNIX and Windows, and subsequently
moved in bytecode form to a JavaChip-based
embedded system or any embedded system
supporting Java. Java bytecode libraries may
require little or no special porting to support
embedded systems, further decreasing devel-
opment cost.

A combination of ease of development,
built-in standard TCP/IP networking and low
cost for development and integration make
JavaChip-based solutions attractive for integrat-
ing data sources into the information system on
the plant floor.

About the Author
Jim Redman is the president of ErgoTech Systems,
Inc., a company focused on developing Java appli-
cations and toolkits for plant-floor automation. This
includes links to low-level systems and hardware,
and also network links -- including CORBA support --
for enterprise distribution of factory automation infor-
mation. He may be reached at
JRedman@ergotech.com.

52 • VOLUME: 3 ISSUE: 8Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Progress Software recent-
ly released the second ver-
sion of its ProtoSpeed dis-
tributed application
debugging and monitor-

ing tool for testing and
deploying Internet or

intranet applications. Proto-
Speed is actually a combination of three
related but distinct components: a protocol
interaction monitor/debugger, the JWatch
remote Java applet debugger from Intermet-
rics and an environment for creating custom
network monitoring applications.

Installation
ProtoSpeed 2.0 is available now for Win-

dows 95 and Windows NT, with a version for
Solaris in beta testing. I reviewed the Win-

dows version on an NT 4.0 system. Proto-
Speed installs quickly from the supplied CD-
ROM. The only problem I had with installa-
tion was the step in configuring the location
of my Java Development Kit. If you have mul-
tiple Java Development Kits installed on your
machine, you must configure the location of
your preferred JDK (version 1.1.2 or newer)
manually. In my case I had Symantec Café 1.8
and Symantec Visual Café 2.5 installed.
Through some trial and error I discovered
that I needed to specify the path to the Visu-
alCafePDE/Java folder in order to use the JDK
that was supplied with Visual Café. Once this
problem was resolved, the rest of the installa-
tion proceeded smoothly.

Application Traffic Viewing
The unique aspect of ProtoSpeed, and

perhaps its most com-
mon use, is monitoring
and debugging the
information trans-
ferred between a client
and a server. Typically,
client/server develop-
ers use LAN protocol
analyzers that eaves-
drop on the network to
monitor client/server
interaction. Rather
than eavesdropping,
ProtoSpeed uses a serv-
er proxy to monitor the
traffic between the
client and server. A
proxy is a server that
intercepts all Internet
requests, passes each
request to the intended
Internet server, receives
the response and, in
turn, forwards the
response to the original
requester. With the rise
of corporate intranets
and the firewalls to iso-
late them from the gen-

eral Internet, most client applications now
include support for proxies. A different proxy
is required for each application protocol. Pro-
toSpeed supports the most common Internet
application protocols, including HTTP for
Web servers, FTP for file transfer, and SMTP,
POP3 and IMAP4 for e-mail systems. You can
run several different proxies at once for differ-
ent protocols or ports. For example, if you are
testing an e-mail package, you can run both an
SMTP proxy and a POP3 proxy at the same
time.

To use ProtoSpeed for Internet protocol
debugging, you must configure your clients to
use ProtoSpeed’s server proxy. Complete
instructions are included for configuring
Netscape Communicator and Microsoft Inter-
net Explorer browsers. You will need to con-
sult your user manual for other clients, such
as e-mail and FTP programs, to find the steps
to configure them to use a proxy. Because the
proxy receives and forwards each packet,
you can set breakpoints that are triggered
when a certain type of packet is received.
When a breakpoint is triggered, the packet
flow between client and server is suspended,
and you can view or modify the packet con-
tents before resuming operation. ProtoSpeed
provides easy-to-use breakpoint dialog win-
dows for each supported protocol. Using
these dialogs you can select almost any pos-
sible packet condition. Figure 1 shows a
breakpoint set for an HTTP interaction.

A big plus for ProtoSpeed over LAN ana-
lyzers and other protocol monitors is the
extensive set of data content viewers for the
complex data types often found in the proto-
col data streams. You can view ActiveX
objects, Java class files, JAR and CAB
archives, ZIP files, images and MIME attach-
ments. Support for these most common data

PRODUCT REVIEW

ProtoSpeed
by Progress Software

An essential client/server traffic monitoring tool

by Jim Mathis

Figure 1: Setting an HTTP breakpoint

▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼

ProtoSpeed 2.0
Progress Software
14 Oak Park
Bedford, MA 01730
Phone: 800 477-6473 ext. 470
Fax: 617 280-4095
Web: www.progress.com
Price: $495 introductory pricing (regular $995)

▲
▲

▲
▲

▲
▲

▲
▲

▲▲▲▲▲▲
▲

▲
▲

▲
▲

▲
▲

JA
VA

developer’s journalJDJ
World class

 AWARD

53VOLUME: 3 ISSUE: 8 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Ad

54 • VOLUME: 3 ISSUE: 8Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

types makes inspection of downloaded Java
applets and ActiveX objects for potential
security problems a breeze. You can also eas-
ily use ProtoSpeed to debug problems with
cookies, understand the loading order of
items on a Web page, check the format of
posted data and monitor for rejected
requests and other error conditions. Figure 2
shows an HTTP packet trace when accessing
the Java Developer’s Journal home page.

Remote Java Debugger
To go along with its Internet protocol

debugger, Progress Software bundles the
JWatch distributed Java debugger from Inter-
metrics into its ProtoSpeed package. With this
debugger you can debug multiple applications
or applets, local and remote, running in a
browser, outside a browser or on a server. The
distributed Java debugger provides a source-
level debugger and also the ability to debug
Java programs where you do not have the
source, such as applets downloaded off the
Web.

The debugging functions commonly avail-
able in an integrated development environ-

ment debugger are also available in Proto-
Speed’s debugger. You can display thread
groups, threads, stack frames, variables,
packages, classes and methods. You can set
breakpoints, single-step, run, pause and kill
threads. If source code is available, it’s dis-
played allowing line-by-line debugging. There
can be multiple windows, each focusing on a
different thread, or multiple windows for the
same source file.

The remote Java debugger component of
ProtoSpeed is compatible with Sun’s JDK ver-
sion 1.1.2 or newer, and can debug applets
and applications running under either the
Sun JVM (e.g., under AppletViewer) or
Microsoft’s JVM that is part of Internet
Explorer.

Custom Network Event Monitoring
The most advanced feature of ProtoSpeed

is its Network Event Manager. This manager
lets you take advantage of ProtoSpeed’s
interception of network traffic to write your
own packet monitoring code. As each packet
is received and processed by ProtoSpeed,
your handler is called to continue process-

ing. These handlers can be running on the
same machine as ProtoSpeed or on a remote
machine. They can be written in Java or
other languages such as Visual Basic. While
quite powerful, this feature is probably
beyond the needs of most developers.

Summary
ProtoSpeed is one of the best client/serv-

er traffic monitoring tools available. It is an
essential tool for network developers, net-
work managers or anyone else needing a
clear understanding of exactly what informa-
tion is being exchanged between their clients
and servers.

About the Author
Jim Mathis is a freelance Java and JavaScript consul-
tant by night and a communications system architect
by day. He has been active in the Internet community
from its very beginnings and wrote one of the first
implementations of TCP/IP. A former Apple employee,
Jim concentrates on Macintosh as a platform. You
can write to him at jmathis@ais.net.

Figure 2: Packet trace for an HTTP transaction

jmathis@ais.net

55VOLUME: 3 ISSUE: 8 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Ad

56 • VOLUME: 3 ISSUE: 8Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

SNEAK PREVIEW

57VOLUME: 3 ISSUE: 8 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Ad

58 • VOLUME: 3 ISSUE: 8Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

IBM
STORY

59VOLUME: 3 ISSUE: 8 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Ad

60 • VOLUME: 3 ISSUE: 8Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

IBM
STORY

61VOLUME: 3 ISSUE: 8 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Ad

62 • VOLUME: 3 ISSUE: 8Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Rogue Wave Software Ships
zApp Developer’s Suite™ 3.1
(Boulder, CO) - Rogue Wave
Software, Inc., has announced
the release of zApp Developer’s
Suite 3.1, an enhanced version
of the company’s set of object-
oriented visual tools for build-
ing portable, native GUIs.

zApp combines ease of visu-
al programming with the power,
flexibility and performance of
C++. The product encapsulates
and extends standard native
windowing systems to provide
a rich set of functionality and
true native look, feel and per-
formance. The 3.1 release adds
Gauge and Spin controls,
enhanced color handling for
Win32 and a reference-counted
font class. It also has new docu-
mentation and support for the
latest operating system and
compiler releases, including
MSVC 5 and HP aCC.

Rogue Wave has also
announced its Third Quarter
earnings, ending June 30, 1998.
Revenue for the quarter was
$11.1 million, up 22 percent
from the $9.2 million achieved
in the third fiscal quarter of
1997. Their year-to-date earn-
ings were up 41 percent from
the prior year. Excluding $0.6
million nonrecurring reorgani-

zation expenses, net earnings
for the quarter were $390,000
or $0.04 per share.

For more information, con-
tact Rogue Wave’s investor rela-
tions by e-mail at ir@rogue-
wave.com, by fax at 303 443-
7780, by phone at 800 758-5804,
or visit their Web site at
www.rwav.com.

SYS-CON Publications
Announces Cold Fusion
Developer’s Journal
(Pearl River, NY) - SYS-CON
Publications has announced
the October launching of Cold
Fusion Developer’s Journal,
geared toward Allaire Corpora-
tion’s new
Web appli-
cation platform.

Initial distribution will be
20,000 copies to newsstands,

paid subscribers and other sin-
gle-copy outlets.

For more information, con-
tact Corey Low at clow@sys-
con.com or Traci Massaro
(Allaire Corporation) at tmas-
saro@allaire.com. SYS-CON’s
Web site address is www.sys-
con.com.

Sun Certifies Multilizer
Java Edition™ 1.1 as
100% Pure Java™

(Helsinki) - Innoview
Data Technologies
has announced its
100% Pure Java
certified localiza-
tion tool’s Multilizer
Java Edition 1.1
standards-compliant
support for develop-
ment environments that
support the Java platform. Sun
Microsystems’ blessing lets
potential customers and end
users know that the product is
portable across all Java-com-
patible systems.

For general information, visit
http://usa.multilizer.com/main.ht
m. Free evaluations are available
at http://usa.multilizer.com/
download. You can also call
Erik Lindberg, Multilizer’s prod-
uct manager at 358 9-476-20553
or e-mail him at erik.lind-
berg@multilizer.com.

MKS Releases Source
Integrity™

(Waterloo, ON) - MKS has
announced the release of MKS
Source Integrity Professional
Edition 3.1, which allows global-
ly distributed software develop-
ment teams to use the World
Wide Web to collaborate on mis-

sion critical software projects.
MKS Source Integrity lists for
$1,299.

For more information, call
MKS tollfree at 800 265-2797 or
visit their Web site at
www.mks.com.

NetDIVE Releases
Client/Server System
(San Francisco, CA) - CallSite™,
a system for connecting visi-

tors of a company’s
Web site (via Web-based
Paging buttons) to the
members of that compa-
ny in real time for instant
communication in voice

or text, also has the
ability to share

documents. The
advantages of Call-

Site are instanta-
neous response, cross-platform
capability and voice communi-
cation.

For more information, call
NetDIVE at 415 474-3756, e-mail
info@netdive.com or visit
www.netdive.com.

BOOMA WebForms™ Beta
Available
(Sandy, UT) - The public beta of
BOOMAASoft’s BOOMA Web-
Forms is
available
for down-
load from its Web site at
www.boomasoft.com/down-
load.htm. The product is an
easy-to-use and cost-effective
solution for Web site develop-
ers to create and manage forms
on their Web sites.

For more information, call
BOOMASoft at 801 495-3200 or
visit www.boomasoft.com.

(Cupertino, CA) - TakeFive
Software has announced avail-
ability of SNiFF+™ 3.0, a family
of integrated source code
comprehension, navigation,
analysis and management
tools. It is now available in two
versions, SNiFF+ and SNiFF+
Cross. The tools enable pro-

gramming teams to quickly
understand and develop com-
plex software systems, result-
ing in shortened development
cycles and higher quality soft-
ware.

The product is available for
a single user for $1,750 per
license or $2,195 for a multiple-
user license, across multiple
platforms it lists at $3,295.

For more information, call
tollfree 800 418-2535 or visit
their Web site at www.Take-
Five.com.

TakeFive Software Introduces Source Code Engineering Tools

(Monrovia, CA) - ParaSoft Cor-
poration has released jtest!
2.0, a completely automatic
white-box test-
ing tool for
Java develop-
ers. With jtest!
developers can
test programs at the
class or module
level giving them the
power to automati-
cally find bugs hidden
in their code that
cause uncaught runtime

exceptions to occur.
jtest! tests at the module

level, which means more
effective code produced by all
manner of Java developers
including API, library and Jav-
aBean developers, servlet or
server-side developers, and
enterprise and large-scale
developers.

Free evaluations are avail-
able from the ParaSoft Web site
at www.parasoft.com/jtest or

by calling 888 305-
0041. Call the
same number to
purchase or for
more informa-

tion, e-mail
fo@parasoft.com or

visit their Web site at
www.parasoft.com.

ParaSoft
Announces
jtest!™ 2.0

��

63VOLUME: 3 ISSUE: 8 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Ad

64 • VOLUME: 3 ISSUE: 8Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Interface Technologies
Releases CodeVizor™ 1.0
(Raleigh, NC) - Interface Tech-
nologies, Inc. (ITI) has
announced the release of its
new software development
tool, CodeVizor. The tool
allows software developers to
quickly visualize and document
the class structure of C++ and
Java code by generating a
color-keyed diagram of their
project’s class hierarchy. Code-
Vizor can view and print the
class hierarchy, and export it
as a graphics file. Class-level
documentation can be pro-
duced by exporting the class
hierarchy for individual classes
as a graphics file that can be

pasted into reports, sys-
tem documentation

and Web pages.
CodeVizor pro-

vides six views of
a project:
Derivation-
View, Hierar-
chyView,
PackageView,
FileView, Dia-
gramView
and Source-
View. The

built-in color
syntax editor
allows
changes to be
made on the
spot.

For more
information, contact

Ken Bagnal, director of market-
ing and sales, tollfree at 800
224-4965, ext. 116, or visit
www.iftech.com.

Inprise Offers Advanced
Java Training and
Application Deployment
(Scotts Valley, CA) - Inprise
Corp. and Referentia Systems
has announced the availability
of a next-generation, computer-
based multimedia training tool
for professional software devel-
opers interested in learning
advanced Java application
development techniques. Refer-
entia for JBuilder is an easy-to-
use, modular and integrated
learning system for Borland
JBuilder 2, Inprise’s family of
visual development tools for
building corporate and enter-

prise software applications
with Java.

Inprise also launched a new
JBuilder Web site devoted to
helping developers build, man-
age and deploy sophisticated
Pure Java applications using
JBuilder 2. The site is located
at www.inprise.com/jbuilder/
deployment/.

Inprise has also announced
its stock buy-back program,
authorized by its board of
directors. The board’s resolu-
tion authorizes Inprise to repur-
chase up to one million shares
of stock for up to 10 million
dollars.

Along with this announce-
ment came Inprise’s earnings
for its second quarter, ending
June 30, 1998. The company
reported a 58 percent increase
over the prior year in sales of
VisiBroker middleware, aimed
at the corporate enterprise
computing market.

All figures reported reflected
pooling of interests with Visi-
genic Software, Inc., acquired in
February, 1998. In June, the
company received share-
holder approval to
change its name from
Borland International
to Inprise Corpora-
tion to reflect its
mission of “integrat-
ing the enterprise.”

Net income for
the quarter was
$1.9 million, com-
pared with a net
loss of $2.5 million
in the same quar-
ter for 1997. Net
loss for the six
months was $11.6
million, which
included $19.3
million in restruc-
turing and acquisition
costs from the purchase of Visi-
genic and a tax benefit of $3.8
million.

For more information, con-
tact Larry Lieberman at Refer-
entia at 808 396-3319, or by e-
mail at larry@referentia.com.
Contact Inprise’s Bret Smith at
408 431-1341 or by e-mail at
bsmith@inprise.com, or visit
their Web site at
www.inprise.com.

(Palo Alto, CA) - Responding
to an increasing need for high-
level knowledge of the Java
programming language, Sun

Microsystems has developed a
new self-paced Java technolo-
gy courseware for program
managers, and is offering on-
site Java technolo-
gy seminars that
target the needs
of independent
software ven-
dors, IT man-
agers and
CIOs. The
courses

were developed for managers
who want quick access to the

benefits of Java computing,
and the expertise to

implement Java
technology in
their environ-
ments. The
classes are
written in the
Java program-
ming lan-
guage. These

new services support Sun’s
“The Road to JavaSM” initia-
tive, a road map for compa-
nies to build Java technology
competence, and to reap the
business benefits from Java
computing and the Internet.

For more information, visit
Sun’s Web site at www.sun.
com, or e-mail Santosh
Ramdev at sramdev@upstart.
com or call him at 510 420-
7986.

Sun Provides
Java Education
for Upper
Management

Quadbase Systems Announces
EspressChart™1.4
(Santa Clara, CA) -
Quadbase Systems
Inc., a supplier of
Web-based tools
and open
client/server DBMS
technologies, has developed
EspressChart 1.4, a tool that
allows you to easily create
and publish graphic charts on
the Web. EspressChart con-
sists of Chart Designer, Chart
Viewer, Chart Server and a
powerful API.

Chart Designer
enables visual
chart creation and
editing using a
browser enabled with Java
technology. Chart Server per-
forms file I/O and access to
JDBC/ODBC data sources on
the Web server. Chart Viewer

allows end users to view
charts with a Web
browser. Web/data-
base developers
and/or end users
can design a profes-
sional-looking
2D/3D chart with

just a few keystrokes and
mouse clicks. The resulting
chart template can either be
incorporated into
applets/applications using
Chart API or directly into an
HTML page.

EspressChart
runs on Windows
95/NT, Solaris, Unix
and IBM platforms.

For more infor-
mation, visit Quadbase’s Web
site at www.quadbase.com or
contact Amy Schultheis, Quad-
base’s product marketing
manager, at 408 982-0835.

Quadbase Systems Offers EspressChart™1.4

65VOLUME: 3 ISSUE: 8 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

“you have
to keep the

cost of
hands-on
training
down so

your group
can...”

...keep up with
the latest in

programming
languages and

software
technology!

DEITEL
& ASSOCIATES, INC.
DEITEL
& ASSOCIATES, INC.
deitel@deitel.com www.deitel.com

490B Boston Post Road, Suite 200, Sudbury, MA 01776
Phone: 978 579-9911 Fax: 978 579-9955

www.prenhall.com/deitel
www.phptr.com/phptrinteractive

www.deitel.com

check out these best-selling deitel/prentice hall
multimedia products and textbooks

Complete Training Courses include a 1000-plus page textbook
and a Multimedia Cyber Classroom CD for information on Deit-

el/Prentice Hall products please visit

WORLD-CLASS TRAINING
FROM THE AUTHORS OF THE WORLD’S #1

JAVAtm, C++ AND C TEXTBOOKS
“VISUAL BASIC® 6 HOW TO PROGRAM” COMING SOON!

WORLD-CLASS TRAINING
FROM THE AUTHORS OF THE WORLD’S #1

JAVATM, C++ AND C TEXTBOOKS
“VISUAL BASIC® 6 HOW TO PROGRAM” COMING SOON!

Public Seminar Schedule
Boston Area

Intro to ANSI C and C++: Part 1

8/10/98-8/14/98

$1295

Intro to ANSI C and C++: Part 2
8/17/98-8/21/98

$1295
C++ and OOP

8/24/98-8/28/98
$1295
Java for Nonprogrammers

8/10/98-8/14/98

For public seminar and on-site seminar
information, contact Abbey Deitel at:

978.579.9911
deitel@deitel.com
www.deitel.com

✓ Java for Nonprogrammers
✓ Java for VB/COBOL Programmers
✓ Java for C/C++ Programmers
✓ Advanced Java Programming
✓ Customized Java Training

(JFC, JavaBeans T M, JDBC, RMI, Security,

✓ Java for VB/COBOL Programmers
✓ Java for C/C++ Programmers
✓ Advanced Java Programming
✓ Customized Java Training

(JFC, JavaBeans T M, JDBC, RMI, Security,

✓ Introduction to ANSI C and C++: Part
1

(for Nonprogrammers)

✓ Introduction to ANSI C and C++: Part
2

(for Non-C programmers)

✓ C++ and Object-Oriented Program-
ming

✓ Visual Basic 5

✓ Object-Oriented Analysis and Design
✓ COM/DCOM/ActiveX T M

✓ CORBA
Trademarks and Registered Trademarks used herein are property of their respective owners

On-Site Seminars

“THE WRITING IS ON THE WALL!”

66 • VOLUME: 3 ISSUE: 8Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Remember electrical science in high
school? The teacher always harped on
impedance matching, or in my case mis-
matching. I never became an electrical engi-
neer, but I did remember one thing about
impedance matching that translates very
well to building network applications: the
output of each tool must match the input of
the other tools. If they don’t match, you
have a software impedance mismatch and
you spend a lot of time and energy trying to
make it match.

The problem of impedance mismatching
becomes particularly acute when we try to
build Java applications with lots of dis-
parate tools and loosely connected pieces.
A development team attempting to build a
network application today typically assem-
bles a wide assortment of tools and compo-
nents: a Java IDE, the latest version of the
JDK, some JDBC drivers for the current ver-
sion of the target database, an object
request broker for server-side logic and so
on.

This is usually described as a best-of-
breed approach. It sounds great. What orga-
nization doesn’t want the best for itself,
right? But it’s not easy to do. No sooner do
the developers try to assemble some pieces
than they encounter the impedance mis-
match because few – if any – of these best-
of-breed pieces talk directly to each other.

And the problems only get worse. What
happens when the new version of the IDE
comes out and it no longer works with the
older JDK you were using? You can move to
the newer JDK, but will the JDBC driver sup-
port it? If you have to upgrade your JDBC
driver, is there one available for the data-
base you’re using? Will the Object Request
Broker you want to use be compatible with
any of this right out of box? Will the new
version of the JDK be supported in the end
user’s browser? There’s only one way to
find out – try, test and keep trying and test-
ing for as long as it takes.

The best-of-breed approach and the
inherent impedance mismatches that result
create problems in four areas:
1. Quality – How will the team ensure quali-

ty without blowing both the budget and
the delivery date?

2. Performance – Impedance mismatches
in electrical science are highly inefficient.
Ditto for software development.

3. Openness – This is a roll of the dice, com-
pletely dependent on the selected pieces.

4. Productivity/maintainability – Very diffi-
cult at best, due to all the hand coding
required to smooth over the impedance
mismatches.

Fortunately, there’s an alternative: an
integrated environment supplied by a sin-
gle vendor that does all the impedance
matching for you. Here the only difficult
decision is choosing an integrated develop-
ment environment vendor in the first place.
After that, most of the necessary pieces
come prewired to do what you need. In
terms of quality, performance, openness
and productivity/maintainability, most of
the burden shifts to the integrated environ-
ment vendor. Your main worry is whether
the vendor will be capable of moving this
solution forward and keeping up with the
requirements.

While it’s true that the Java platform
deals with these kinds of issues better than
other platforms, impedance mismatch can
still be daunting for a development team in
the throes of a project. Use of an integrated
development environment, however,
decreases the impact of impedance mis-
match. Just upgrade the integrated environ-
ment and in one move you’ve upgraded
most or all of the pieces.

Today’s early adopters naturally want to
hand-sew the solution. The notion of an
open platform understandably fuels the
desire to join different, relatively compati-
ble products. Having done this over and
over again and achieved miserable levels of
productivity and maintenance, however, I
suggest jumping to an integrated solution.
You’ll gain substantial benefits in the
process. After all, we’re trying to build
applications: the business logic, the UI and
the events and workflow. We don’t win extra
points for doing it the hard way.

Impedance Mismatch
Hinders Development

of Network Applications

by Java George

Java George is George Kassabgi, director of
developer relations for Progress Software’s
Apptivity Product Unit. You can e-mail
George at george@apptivity.com.

THE GRIND

“The output

of each tool

must match

the input of the

other tools”

George@sys-con.com

http://www.JavaDevelopersJournal.com 67Java DEVELOPER’S JournalVOLUME:3 ISSUE:8 •

Ad

68 Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Full Page Ad

• VOLUME: 3 ISSUE: 8

